【題目】已知函數(shù), .
(1)當時,求函數(shù)的曲線上點處的切線方程;
(2)當時,求的單調區(qū)間;
(3)若有兩個極值點, ,其中,求的最小值.
【答案】(1) (2) 見解析(3)
【解析】試題分析:(1)根據(jù)導數(shù)的幾何意義得到, ,得到結果;(2)對函數(shù)求導分情況討論導函數(shù)的正負,從而得到單調區(qū)間;(3)構造函數(shù)研究函數(shù)的單調性,得到函數(shù)的變化趨勢,進而得到函數(shù)最值。
解析:
解:(1)當時, 所以,
又
過切點的切線方程為
即:
(2)由題意得: ,
令
當時, , 在上單調遞增.
②當時,令,解得: 或
令,解得:
綜上,當時, 的單調增區(qū)間為,
當時,單調增區(qū)間為,
單調減區(qū)間為
(3)由(2)知, ,
由題意知, , 是方程的兩根
, ,
, ,
令
當時,
在上單調遞減,
即的最小值為.
科目:高中數(shù)學 來源: 題型:
【題目】某市舉行“中學生詩詞大賽”,分初賽和復賽兩個階段進行,規(guī)定:初賽成績大于90分的具有復賽資格,某校有800名學生參加了初賽,所有學生的成績均在區(qū)間(30,150]內,其頻率分布直方圖如圖.則獲得復賽資格的人數(shù)為()
A.640B.520C.280D.240
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
()當時,求此函數(shù)對應的曲線在處的切線方程.
()求函數(shù)的單調區(qū)間.
()對,不等式恒成立,求的取值范圍.
【答案】();()見解析;()當時, ,當時
【解析】試題分析:(1)利用導數(shù)的意義,求得切線方程為;(2)求導得,通過, , 分類討論,得到單調區(qū)間;(3)分離參數(shù)法,得到,通過求導,得, .
試題解析:
()當時, ,
∴, ,
,∴切線方程.
()
.
令,則或,
當時, 在, 上為增函數(shù).
在上為減函數(shù),
當時, 在上為增函數(shù),
當時, 在, 上為單調遞增,
在上單調遞減.
()當時, ,
當時,由得
,對恒成立.
設,則
,
令得或,
極小 |
,∴, .
點睛:本題考查導數(shù)在函數(shù)綜合題型中的應用。含參的函數(shù)單調性討論,考查學生的分類討論能力,本題中,結合導函數(shù)的形式,分類討論;含參的恒成立問題,一般采取分離參數(shù)法,解決恒成立。
【題型】解答題
【結束】
20
【題目】已知集合,集合且滿足:
, , 與恰有一個成立.對于定義 .
()若, , , ,求的值及的最大值.
()取, , , 中任意刪去兩個數(shù),即剩下的個數(shù)的和為,求證: .
()對于滿足的每一個集合,集合中是否都存在三個不同的元素, , ,使得恒成立,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)證明函數(shù)為奇函數(shù);
(2)判斷函數(shù)的單調性(無需證明),并求函數(shù)的值域;
(3)是否存在實數(shù),使得的最大值為?若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于兩條平行直線和圓的位置關系定義如下:若兩直線中至少有一條與圓相切,則稱該位置關系為“平行相切”;若兩直線都與圓相離,則稱該位置關系為“平行相離”;否則稱為“平行相交”.已知直線l1:ax+3y+6=0,l2:2x+(a+1)y+6=0與圓C:x2+y2+2x=b2-1(b>0)的位置關系是“平行相交”,則實數(shù)b的取值范圍為 ( )
A. (, ) B. (0, )
C. (0, ) D. (, )∪(,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設某地區(qū)鄉(xiāng)居民人民幣儲蓄存款(年底余額)如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
時間代號 | 1 | 2 | 3 | 4 | 5 | 6 |
儲蓄存款(千億元) | 3.5 | 5 | 6 | 7 | 8 | 9.5 |
(1)求關于的回歸方程,并預測該地區(qū)2019年的人民幣儲蓄存款(用最簡分數(shù)作答).
(2)在含有一個解釋變量的線性模型中,恰好等于相關系數(shù)的平方,當時,認為線性回歸模型是有效的,請計算并且評價模型的擬合效果(計算結果精確到).
附:
, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在中,內角、、所對的邊分別是、、,不等式對一切實數(shù)恒成立.
(1)求的取值范圍;
(2)當取最大值,且的周長為時,求面積的最大值,并指出面積取最大值時的形狀.(參考知識:已知、,;、,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某動漫影視制作公司長期堅持文化自信,不斷挖掘中華優(yōu)秀傳統(tǒng)文化中的動漫題材,創(chuàng)作出一批又一批的優(yōu)秀動漫影視作品,獲得市場和廣大觀眾的一致好評.同時也為公司贏得豐厚的利潤,該公司2013年至2019年的年利潤關于年份代號的統(tǒng)計數(shù)據(jù)如下表(已知該公司的年利潤與年份代號線性相關)
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
年份代號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
年利潤(單位:億元) | 29 | 33 | 36 | 44 | 48 | 52 | 59 |
(1)求關于的線性回歸方程,并預測該公司2020年的年利潤;
(2)當統(tǒng)計表中某年年利潤的實際值大于由(1)中線性回歸方程計算出該年利潤的估計值時,稱該年為A級利潤年,否則稱為B級利潤年.現(xiàn)從2015年至2019年這5年中隨機抽取2年,求恰有1年為A級利潤年的概率.
參考公式:,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定點,定直線,動點到點的距離比點到的距離小1.
(1)求動點P的軌跡C的方程;
(2)過點的直線與(1)中軌跡C相交于兩個不同的點M、N,若,求直線的斜率的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com