【題目】在如圖所示的多面體中, 平面 , , , , 的中點(diǎn).

(1)求證: 平面
(2)求二面角 的余弦值.

【答案】
(1)證明:∵ , ,∴ ,又∵ 的中點(diǎn),∴ ,且 ,∴四邊形 是平行四邊形,∴ .∵ 平面 , 平面 ,∴ 平面

(2)解:∵ 平面 , 平面 , 平面 ,∴ , ,又 ,∴ 兩兩垂直,以點(diǎn) 為坐標(biāo)原點(diǎn), 分別為 軸,

建立如圖的空間直角坐標(biāo)系,

由已知得 , , , ,由已知得 是平面 的法向量,設(shè)平面 的法向量為 ,∵ , ,∴ ,即 ,令 ,得 .設(shè)二面角 的大小為 . ,∴二面角 的余弦值為 .


【解析】(1)先證明四邊形 A D G B 是平行四邊形,在平面 D E G中找到A B ∥ D G,從而證得結(jié)論.
(2)建立空間直角坐標(biāo)系,借助向量求解.
【考點(diǎn)精析】利用直線與平面平行的判定對(duì)題目進(jìn)行判斷即可得到答案,需要熟知平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

I)若a=1,求在區(qū)間[0,3]上的最大值和最小值;

II)解關(guān)于x的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是公差不為零的等差數(shù)列,滿足數(shù)列的通項(xiàng)公式為

1)求數(shù)列的通項(xiàng)公式;

2將數(shù)列,中的公共項(xiàng)按從小到大的順序構(gòu)成數(shù)列,請(qǐng)直接寫出數(shù)列的通項(xiàng)公式;

3是否存在正整數(shù) ,使得成等差數(shù)列?若存在,求出的值;若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)多面體的直觀圖、正視圖、側(cè)視圖、俯視圖如圖,M,N分別為A1BB1C1的中點(diǎn).

下列結(jié)論中正確的個(gè)數(shù)有 (  )

①直線MN與A1C相交.

②MN⊥BC.

③MN∥平面ACC1A1.

④三棱錐N-A1BC的體積為=a3.

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)過點(diǎn)( ,1),且以橢圓短軸的兩個(gè)端點(diǎn)和一個(gè)焦點(diǎn)為頂點(diǎn)的三角形是等腰直角三角形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)M(x,y)是橢圓C上的動(dòng)點(diǎn),P(p,0)是x軸上的定點(diǎn),求|MP|的最小值及取最小值時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,D、E分別是AB、AC的中點(diǎn),M是直線DE上的動(dòng)點(diǎn).若△ABC的面積為2,則 + 2的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

I)若a=1,求在區(qū)間[0,3]上的最大值和最小值;

II)解關(guān)于x的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一座橋的截面圖,橋的路面由三段曲線構(gòu)成,曲線AB和曲線DE分別是頂點(diǎn)在路面A、E的拋物線的一部分,曲線BCD是圓弧,已知它們?cè)诮狱c(diǎn)B、D處的切線相同,若橋的最高點(diǎn)C到水平面的距離H=6米,圓弧的弓高h(yuǎn)=1米,圓弧所對(duì)的弦長BD=10米.
(1)求弧 所在圓的半徑;
(2)求橋底AE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(I)求 的單調(diào)區(qū)間;
(II)若對(duì)任意的 ,都有 ,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案