設(shè)
a
=(cosα,(λ-1)sinα),
b
=(cosβ,sinβ),(λ>0,0<α<β<
π
2
)是平面上的兩個(gè)向量,若向量
a
+
b
a
-
b
互相垂直.
(1)求實(shí)數(shù)λ的值;
(2)若
a
b
=
4
5
,且tanβ=
4
3
,求tan(α-
π
4
)的值.
考點(diǎn):兩角和與差的正切函數(shù),平面向量數(shù)量積的運(yùn)算,三角函數(shù)中的恒等變換應(yīng)用
專題:三角函數(shù)的求值,平面向量及應(yīng)用
分析:(1)由向量的垂直的條件和題意列出方程,再由向量的數(shù)量積運(yùn)算進(jìn)行化簡(jiǎn)求值;
(2)由向量的數(shù)量積運(yùn)算、兩角差的余弦公式化簡(jiǎn)
a
b
=
4
5
,求出cos(α-β),再由同角三角函數(shù)的基本關(guān)系求出sin(α-β)、tan(α-β),兩角和的正切公式求出tanα和tan(α-
π
4
).
解答: 解:(1)由題意得,(
a
+
b
)•(
a
-
b
)=0,則
a
2
-
b
2
=0
,
a
=(cosα,(λ-1)sinα),
b
=(cosβ,sinβ)代入上式得,
cos2a+(λ-1)2sin2α-cos2β-sin2β=0,
化簡(jiǎn)得,(λ-1)2sin2α-sin2α=0,
因?yàn)棣耍?,0<α<
π
2
,所以(λ-1)2-1=0,解得λ=2;
(2)由(1)知,
a
b
=(cosα,sinα)•(cosβ,sinβ)
=cosαcosβ+sinαsinβ=cos(α-β)=
4
5

因?yàn)?<α<β<
π
2
,所以-
π
2
<α-β<0,
所以sin(α-β)=-
1-cos2(α-β)
=-
3
5
,
則tan(α-β)=
sin(α-β)
cos(α-β)
=-
3
4

所以tanα=tan[(α-β)+β]=
tan(α-β)+tanβ
1-tan(α-β)tanβ
=
-
3
4
+
4
3
1-(-
3
4
4
3
=
7
24
,
則tan(α-
π
4
)=
tanα-tan45°
1+tanαtan45°
=
7
24
-1
1+
7
24
=-
17
31
點(diǎn)評(píng):本題考查向量的垂直的條件,向量的數(shù)量積運(yùn)算,平方關(guān)系,兩角和的正切公式的應(yīng)用,注意角之間關(guān)系的靈活變形,以及角的范圍的確定,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)定義域(-1,1],滿足f(x)+1=
1
f(x+1)
,當(dāng)x∈[0,1]時(shí),f(x)=x,若函數(shù)g(x)=
f(x),-1<x≤1
1
2
|x2-5x+6|,
1<x≤3
,方程g(x)-mx-2m=0有三個(gè)實(shí)根,則實(shí)數(shù)m的取值范圍是(  )
A、
1
36
≤m<
1
3
B、
1
36
<m<1
C、
9-4
5
2
≤m<
1
3
D、
9-4
5
2
<m<
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|a|<1,|b|<1,求證:|
1-ab
a-b
|>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù).f(x)=2sinxcosx+sin2x-cos2x.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)將f(x)的圖象向左平移
π
8
個(gè)單位長(zhǎng)度,然后縱坐標(biāo)不變,橫坐標(biāo)縮短到原來的
1
2
倍,可得到函數(shù)g(x)的圖象,求g(x)的對(duì)稱軸;
(3)若f(-
α
2
)=-
3
3
,α∈(0,π),求cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=exlnx在x=1處的切線方程是( �。�
A、y=2e(x-1)
B、y=ex-1
C、y=x-e
D、y=e(x-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若loga2=m,loga3=π,其中a>0,且a≠1,則am+n=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊烽懗鑸电仚婵°倗濮寸换姗€鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾诲┑鐘叉搐缁狀垶鏌ㄩ悤鍌涘