6.已知直線l1:3mx+(m+2)y+1=0,直線l2:(m-2)x+(m+2)y+2=0,且l1∥l2,則m的值為-1.

分析 根據(jù)兩條直線平行的條件,建立關(guān)于m的關(guān)系式,即可得到使l1∥l2的實(shí)數(shù)m的值.

解答 解:當(dāng)直線l1∥l2時(shí),$\frac{3m}{m-2}=\frac{m+2}{m+2}≠\frac{1}{2}$
解之得m=-1,
故答案為:-1

點(diǎn)評 本題在兩條直線平行的情況下求參數(shù)m的值.著重考查了直線的方程與直線的位置關(guān)系等知識,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列說法正確的是( 。
A.正方形的直觀圖可能是平行四邊形
B.梯形的直觀圖可能是平行四邊形
C.矩形的直觀圖可能是梯形
D.互相垂直的兩條直線的直觀圖一定是互相垂直的兩條直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.己知函數(shù)f(x)=(2a+2)lnx+2ax2+5,g(x)=$\frac{1}{2}$lnx-$\frac{1}{2{e}^{2}}$x
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若a>0時(shí),對?x1,x2∈[2,2e2]都有10+g(x1)≤f(x2)成立,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.定義在R上的函數(shù)f(x)滿足y=f(x-3)的圖象關(guān)于(3,0)中心對稱,當(dāng)-1≤x≤0時(shí),f(x)=-x(1+x),則當(dāng)0≤x≤1時(shí),f(x)=-x(1-x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若直線ax+2y+2=0與直線x+(a-1)y+1=0互相平行,則a的值為( 。
A.-1B.2C.-1或2D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知i為虛數(shù)單位,復(fù)數(shù)z滿足z(1-i)=1+i,則|z|=(  )
A.0B.$\sqrt{2}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列5個命題:
(1){很大的數(shù)}可以組成一個集合;
(2)集合{x|ax+b=0}是單元素集合;
(3)集合{小于1的正有理數(shù)}是一個有限集;
(4){1,2,3,4}={2,4,1,3};
(5)任何集合的子集個數(shù)都不少于1個;
其中正確的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.等比數(shù)列{an}的前n項(xiàng)和為Sn,已知S1,S3,S2成等差數(shù)列.
(1)求{an}的公比q;
(2)若a1-a3=3,bn=$\frac{1}{n(n+1)}$+|an|,求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.等差數(shù)列{an}前11項(xiàng)的和等于前4項(xiàng)的和.若a1=1,ak+a4=0,則k=( 。
A.12B.11C.10D.9

查看答案和解析>>

同步練習(xí)冊答案