【題目】(1)求對(duì)稱軸是軸,焦點(diǎn)在直線上的拋物線的標(biāo)準(zhǔn)方程;

(2)過(guò)拋物線焦點(diǎn)的直線它交于兩點(diǎn),求弦的中點(diǎn)的軌跡方程.

【答案】(1);(2).

【解析】試題分析:(1)根據(jù)題意知道焦點(diǎn)就是直線和x軸的交點(diǎn),根據(jù)拋物線的定義得到方程即可;

2)先考慮直線的斜率不存在時(shí)的情況;再考慮直線斜率存在時(shí),聯(lián)立直線和拋物線根據(jù)韋達(dá)定理得到中點(diǎn)坐標(biāo)為,再消參即可。

解析:

(1)對(duì)稱軸是軸則頂點(diǎn)在焦點(diǎn)在

所以,則,

.

(2)由題知拋物線焦點(diǎn)為,

當(dāng)直線的斜率存在時(shí),設(shè)為,則焦點(diǎn)弦方程為

代入拋物線方程得所以,由題意知斜率不等于0,

方程是一個(gè)一元二次方程,由韋達(dá)定理:

所以中點(diǎn)坐標(biāo):

代入直線方程

中點(diǎn)縱坐標(biāo);

即中點(diǎn)為

消參數(shù),得其方程為

當(dāng)直線的斜率不存在時(shí),直線的中點(diǎn)是,符合題意,

綜上所述,答案為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解學(xué)生身高情況,某校以10%的比例對(duì)全校700名學(xué)生按性別進(jìn)行抽樣檢查,測(cè)得身高情況的統(tǒng)計(jì)圖如圖所示:

(1)估計(jì)該校男生的人數(shù);

(2)估計(jì)該校學(xué)生身高在170185cm的概率;

(3)從樣本中身高在180190cm的男生中任選2人,求至少有1人身高在185190cm的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓 的左、右焦點(diǎn)分別為,上頂點(diǎn)為,過(guò)點(diǎn)垂直的直線交軸負(fù)半軸于點(diǎn),且.

Ⅰ)求橢圓的離心率;

Ⅱ)若過(guò)、、三點(diǎn)的圓恰好與直線 相切,求橢圓的方程;

III)在(Ⅱ)的條件下,過(guò)右焦點(diǎn)作斜率為的直線與橢圓交于、兩點(diǎn),在軸上是否存在點(diǎn)使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍,如果不存在,說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的與直線相切.

(Ⅰ)求橢圓的方程;

(Ⅱ)過(guò)定點(diǎn)斜率為的直線與橢圓交于兩點(diǎn),若,求斜率的值;

(Ⅲ)若(Ⅱ)中的直線交于兩點(diǎn),設(shè)點(diǎn)上,試探究使的面積為的點(diǎn)共有幾個(gè)?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若圓(x-1)2+(y+1)2R2上有且僅有兩個(gè)點(diǎn)到直線4x+3y=11的距離等于1,則半徑R的取值范圍是(  )

A. R>1 B. R<3 C. 1<R<3 D. R≠2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,,,DB平分,為的中點(diǎn),

(1)證明: ;

(2)證明:

(3)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=aln(x2+1)+bx存在兩個(gè)極值點(diǎn)x1 , x2
(1)求證:|x1+x2|>2;
(2)若實(shí)數(shù)λ滿足等式f(x1)+f(x2)+a+λb=0,試求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了月份每月號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期

1月10日

2月10日

3月10日

4月10日

5月10日

6月10日

晝夜溫差

就診人數(shù)(個(gè))

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)求選取的組數(shù)據(jù)恰好是相鄰兩月的概率;

(2)若選取的是1月與月的兩組數(shù)據(jù),請(qǐng)根據(jù)2至5月份的數(shù)據(jù),求出關(guān)于的線性回歸方程

(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)該小組所得線性回歸方程是否理想?

參考數(shù)據(jù),

(參考公式: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓 的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.

(1)求橢圓的方程;

(2)已知點(diǎn),設(shè)是橢圓上關(guān)于軸對(duì)稱的不同兩點(diǎn),直線相交于點(diǎn),求證:點(diǎn)在橢圓上.

查看答案和解析>>

同步練習(xí)冊(cè)答案