求三個(gè)數(shù)115、161、805的最大公約數(shù)是
 
考點(diǎn):用輾轉(zhuǎn)相除計(jì)算最大公約數(shù)
專題:算法和程序框圖
分析:利用輾轉(zhuǎn)相除法即可得出.
解答: 解:161=115×1+46,115=46×2+23,46=23×2,115與161的最大公約數(shù)是23.
805=161×5,∴805與161的最大公約數(shù)是161.
因此三個(gè)數(shù)115、161、805的最大公約數(shù)是23.
故答案為:23.
點(diǎn)評(píng):本題考查了輾轉(zhuǎn)相除法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)平面內(nèi)動(dòng)點(diǎn)z,滿足|z-4i|+|z+4i|=10,設(shè)復(fù)數(shù)z對(duì)應(yīng)的坐標(biāo)為(x,y),則在復(fù)平面中對(duì)應(yīng)直角坐標(biāo)系中的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a=1,b=9的等比中項(xiàng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=1,an+1-an=4n-2(n∈N*),則使an≥163正整數(shù)n的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓Ω:
x2
a2
+
y2
b2
=1(a>b>0),其離心率與雙曲線
x2
3
-y2=1的離心率互為倒數(shù),而直線x+y=
3
恰過(guò)橢圓Ω的焦點(diǎn).
(1)求橢圓Ω的方程;
(2)設(shè)橢圓的左右頂點(diǎn)分別為A、B,上頂點(diǎn)為C,點(diǎn)P是橢圓上不同于頂點(diǎn)的任意一點(diǎn),連接BP交直線AC于點(diǎn)M,連接CP與x軸交于點(diǎn)N,記直線MN,MB斜率分別為k1,k2,求2k1-k2是否為定值,若是求出該定值并證明,若不是說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)點(diǎn)P是橢圓
x2
a2
+
y2
b2
=1(a>b>0)上異于頂點(diǎn)的任意點(diǎn),作△PF1F2的左、右旁切圓,與x軸的切點(diǎn)為D,則點(diǎn)D( 。
A、在橢圓內(nèi)B、在橢圓外
C、在橢圓上D、以上都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

滿足與直線y=x+2垂直且與圓x2+y2-6x+1=0相切的直線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有六名同學(xué)報(bào)名參加三個(gè)智力競(jìng)賽項(xiàng)目,在下列情況下各有多少種不同的報(bào)名方法?(不一定六名同學(xué)都能參加)
(1)每人恰好參加一項(xiàng),每項(xiàng)人數(shù)不限;
(2)每項(xiàng)限報(bào)一人,且每人至多參加一項(xiàng);
(3)每項(xiàng)限報(bào)一人,但每人參加的項(xiàng)目不限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=ex
(1)求這個(gè)函數(shù)在x=e處的切線方程;
(2)過(guò)原點(diǎn)作曲線y=ex的切線,求切線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案