【題目】已知數(shù)列的通項公式,數(shù)列滿足,為數(shù)列的前項和。

I;

II若對任意的不等式恒成立,求實數(shù)的取值范圍。

【答案】III)(,0

【解析】

試題分析:I代入得到數(shù)列的通項公式,結(jié)合特點采用裂項相消法求和可得;II將不等式中的參數(shù)分離,通過求不等號右側(cè)式子的最值得到實數(shù)的取值范圍。

試題解析:I=2n-1,

所以,

III得:,

當(dāng)n為奇數(shù)時,恒成立,

因為當(dāng)n為奇數(shù)時,單調(diào)遞增,所以當(dāng)n=1時,取得最小值為0,此時<0。

當(dāng)n為偶數(shù)時,恒成立,

因為當(dāng)n為偶數(shù)時,單調(diào)遞增,所以當(dāng)n=2時,取得最小值為,此時。

綜上所述,對于任意的正整數(shù)n,原不等式恒成立,的取值范圍是,0。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正四棱錐PABCD如圖.

)若其正視圖是一個邊長分別為、2的等腰三角形,求其表面積S、體積V;

)設(shè)AB中點為M,PC中點為N,證明:MN平面PAD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】知圓,坐標(biāo)原點,圓外,過點切線,設(shè)點為.

(1)若運動,求此時切線的方程

(2)求滿足軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為打入國際市場,決定從、兩種產(chǎn)品中選擇一種進(jìn)行投資生產(chǎn),已知投資生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:(單位:萬美元)

年固定成本

每件產(chǎn)品成本

每件產(chǎn)品銷售價

每年最多可生產(chǎn)的件數(shù)

A產(chǎn)品

20

10

200

B產(chǎn)品

40

8

18

120

其中年固定成本與年生產(chǎn)的件數(shù)無關(guān),是待定常數(shù),其值由生產(chǎn)產(chǎn)品的原材料決定,預(yù)計,另外,年銷售B產(chǎn)品時需上交萬美元的特別關(guān)稅,假設(shè)生產(chǎn)出來的產(chǎn)品都能在當(dāng)年銷售出去.

(1)求該廠分別投資生產(chǎn)A、兩種產(chǎn)品的年利潤與生產(chǎn)相應(yīng)產(chǎn)品的件數(shù)之間的函數(shù)關(guān)系,并求出其定義域;

(2)如何投資才可獲得最大年利潤?請設(shè)計相關(guān)方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某細(xì)胞分裂時,由1個分裂成2個,2個分裂成4個,,這樣細(xì)胞分裂x次后,得到細(xì)胞總數(shù)yx的函數(shù)關(guān)系是(  )

A. y2x11(x∈N*) B. y2x(x∈N*)

C. y2x1(x∈N*) D. y2x1(x∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)的一種電子產(chǎn)品的成本是每件500元,計劃在今后的3年內(nèi),使成本降低到每件256元,則平均每年成本應(yīng)降低(  )

A. 10% B. 15% C. 20% D. 25%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校做了一次關(guān)于“感恩父母”的問卷調(diào)查,從8~10歲,11~12歲,13~14歲,15~16歲四個年齡段回收的問卷依次為:120份,180份,240份,x份.因調(diào)查需要,從回收的問卷中按年齡段分層抽取容量為300的樣本,其中在11~12歲學(xué)生問卷中抽取60份,則在15~16歲學(xué)生中抽取的問卷份數(shù)為( )

A.60 B.80 C.120 D.180

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對某電子元件進(jìn)行壽命追蹤調(diào)查,情況如下.

壽命h

100~200

200~300

300~400

400~500

500~600

數(shù)

20

30

80

40

30

1列出頻率分布表,畫出頻率分布直方圖;

2從頻率分布直方圖估計出電子元件壽命的眾數(shù)、中位數(shù)分別是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察下列各等式:55=3125,56=15625,57=78125,…,則52018的末四位數(shù)字為__

查看答案和解析>>

同步練習(xí)冊答案