【題目】在△ABC中,∠BAC=90°,D是BC邊的中點(diǎn),AE⊥AD,AE交CB的延長(zhǎng)線于E,則下面結(jié)論中正確的是(  )

A.△AED∽△ACB
B.△AEB∽△ACD
C.△BAE∽△ACE
D.△AEC∽△DAC

【答案】C
【解析】解:∵∠BAC=90°,D是BC中點(diǎn),
∴DA=DC,
∴∠DAC=∠C,
又∵AE⊥AD,
∴∠EAB+∠BAD=90°,∠CAD+∠BAD=90°,
∴∠EAB=∠DAC,
∴∠EAB=∠C,
而∠E是公共角,
∴△BAE∽△ACE
故選C.
先利用直角三角形斜邊上的中線等于斜邊的一半得到DA=DC,則∠DAC=∠C,再利用等角的余角相等得到∠EAB=∠DAC,從而有∠EAB=∠C,再加上公共角即可判斷△BAE∽△ACE.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= sin xcos x+cos2x+a;則f(x)的最小正周期為 , 若f(x)在區(qū)間[﹣ , ]上的最大值與最小值的和為 ,則實(shí)數(shù)a的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為S,a2+a6=20,S5=40.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)等比數(shù)列{bn}滿(mǎn)足b2=a3 , b3=a7.若b6=ak , 求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),滿(mǎn)足a1=1,ak+1﹣ak=ai . (i≤k,k=1,2,3,…,n﹣1)
(1)求證: ;
(2)若{an}是等比數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形是正方形, , , , 都是等邊三角形, 、、分別是線段、、、的中點(diǎn),分別以、、、為折痕將四個(gè)等邊三角形折起,使得、、四點(diǎn)重合于一點(diǎn),得到一個(gè)四棱錐.對(duì)于下面四個(gè)結(jié)論:

為異面直線; 直線與直線所成的角為

平面; 平面平面;

其中正確結(jié)論的個(gè)數(shù)有(

A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】輪船A從某港口O將一些物品送到正航行的輪船B上,在輪船A出發(fā)時(shí),輪船B位于港口O北偏西30°且與O相距20海里的P處,并正以30海里/小時(shí)的航速沿正東方向勻速行駛,假設(shè)輪船A沿直線方向以V海里/小時(shí)的航速勻速行駛,經(jīng)過(guò)t小時(shí)與輪船B相遇.
(1)若使相遇時(shí)輪船A航距最短,則輪船A的航行速度大小應(yīng)為多少?
(2)假設(shè)輪船A的最高航行速度只能達(dá)到30海里/小時(shí),則輪船A以多大速度及什么航行方向才能在最短時(shí)間與輪船B相遇,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中

I)若a=1,求在區(qū)間[0,3]上的最大值和最小值;

II)解關(guān)于x的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿(mǎn)足: ,

)求, 的值.

)求證:數(shù)列是等比數(shù)列.

)令,如果對(duì)任意,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)多面體的直觀圖、正視圖、側(cè)視圖、俯視圖如圖,M,N分別為A1B,B1C1的中點(diǎn).

下列結(jié)論中正確的個(gè)數(shù)有 (  )

①直線MN與A1C相交.

②MN⊥BC.

③MN∥平面ACC1A1.

④三棱錐N-A1BC的體積為=a3.

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案