拋物線上與焦點的距離等于9的點的坐標是___________.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

( (本小題滿分12分)
拋物線上有兩個定點A、B分別在對稱軸的上、下兩側(cè),F(xiàn)為拋物線的焦點,并且|FA|=2,|FB|=5,
(1)求直線AB的方程.
(2)在拋物線AOB這段曲線上求一點P,使△PAB的面積最大,并求這個最大面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)
(1)求拋物線在點(1,4)處的切線方程
(2)求曲線在點M(π,0)處的切線的斜率

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知拋物線,過定點作兩條互相垂直的直線,與拋物線交于兩點,與拋物線交于兩點,設(shè)的斜率為.若某同學已正確求得弦的中垂線在y軸上的截距為,則弦MN的中垂線在y軸上的截距為

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知F1、F2是雙曲線的兩個焦點,M為雙曲線上的點,若
MF1⊥MF2,∠MF2F1 = 60°,則雙曲線的離心率為                    (      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線的焦點坐標是:
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知不垂直于x軸的動直線l交拋物線于A、B兩點,若A,B兩點滿足AQP=BQP,其中Q(-4,0),原點O為PQ的中點.

①求證A,P,B三點共線;
②當m=2時,是否存在垂直于-軸的直線,使被以為直徑的圓所截得的弦長為定值,如果存在,求出的方程,如果不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設(shè)拋物線=4y的焦點為F,經(jīng)過點P(1,4)的直線l與拋物線相交于A、B兩點,且點P恰為AB的中點,則||+||=________________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

拋物線上不存在關(guān)于直線對稱的兩點,則的取值范圍是        

查看答案和解析>>

同步練習冊答案