【題目】已知拋物線C:y2=4x,焦點(diǎn)為F,過點(diǎn)P(﹣1,0)作斜率為k(k>0)的直線l與拋物線C交于A,B兩點(diǎn),直線AF,BF分別交拋物線C于M,N兩點(diǎn),若 + =18,則k= .
【答案】
【解析】解:由題意,圖形關(guān)于x軸對(duì)稱,A,B,P三點(diǎn)共線,可得 = .
由焦半徑公式|AF|=x1+1=|NF|,||BF|=x2+1=|MF|,
∴ + = + =18,∴(y1+y2)2=20y1y2 ,
由 ,可得ky2﹣4y+4k=0,
∴y1+y2= ,y1y2=4,∴ =80,
∵k>0,∴k= .
所以答案是 .
【考點(diǎn)精析】通過靈活運(yùn)用拋物線的定義,掌握平面內(nèi)與一個(gè)定點(diǎn)和一條定直線的距離相等的點(diǎn)的軌跡稱為拋物線.定點(diǎn)稱為拋物線的焦點(diǎn),定直線稱為拋物線的準(zhǔn)線即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班級(jí)有50名學(xué)生,其中有30名男生和20名女生,隨機(jī)詢問了該班五名男生和五名女生在某次數(shù)學(xué)測(cè)驗(yàn)中的成績(jī),五名男生的成績(jī)分別為86,94,88,92,90,五名女生的成績(jī)分別為88,93,93,88,93,下列說法正確的是( )
A.這種抽樣方法是一種分層抽樣
B.這種抽樣方法是一種系統(tǒng)抽樣
C.這五名男生成績(jī)的方差大于這五名女生成績(jī)的方差
D.該班男生成績(jī)的平均數(shù)大于該班女生成績(jī)的平均數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在去年的足球甲聯(lián)賽上,一隊(duì)每場(chǎng)比賽平均失球數(shù)是1.5,全年比賽失球個(gè)數(shù)的標(biāo)準(zhǔn)差為1.1;二隊(duì)每場(chǎng)比賽平均失球數(shù)是2.1,全年失球個(gè)數(shù)的標(biāo)準(zhǔn)差是0.4,你認(rèn)為下列說法中正確的個(gè)數(shù)有( )
①平均來(lái)說一隊(duì)比二隊(duì)防守技術(shù)好;②二隊(duì)比一隊(duì)防守技術(shù)水平更穩(wěn)定;③一隊(duì)防守有時(shí)表現(xiàn)很差,有時(shí)表現(xiàn)又非常好;④二隊(duì)很少不失球.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足:f′(x)﹣f(x)=xex , 且f(0)= ,則 的最大值為( )
A.0
B.
C.1
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a=(5cos x,cos x),b=(sin x,2cos x),設(shè)函數(shù)f(x)=a·b+|b|2+.
(1) 求函數(shù)f (x)的最小正周期和對(duì)稱中心;
(2) 當(dāng)時(shí),求函數(shù)f(x)的值域;
(3) 該函數(shù)y=f (x)的圖象可由的圖象經(jīng)過怎樣的變換得到?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面給出一個(gè)問題的算法:
S1 輸入x;
S2 若x≤2,則執(zhí)行S3;否則,執(zhí)行S4;
S3 輸出-2x-1;
S4 輸出x2-6x+3.
問題:
(1)這個(gè)算法解決的是什么問題?
(2)當(dāng)輸入的x值為多大時(shí),輸出的數(shù)值最小?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的半焦距為,左焦點(diǎn)為,右頂點(diǎn)為,拋物線與橢圓交于兩點(diǎn),若四邊形是菱形,則橢圓的離心率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的五面體中,面為直角梯形, ,平面平面, , 是邊長(zhǎng)為2的正三角形.
(1)證明: 平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某射擊運(yùn)動(dòng)員,每次擊中目標(biāo)的概率都是.現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員射擊次至少擊中次的概率:先由計(jì)算器算出到之間取整數(shù)值的隨機(jī)數(shù),指定,表示沒有擊中目標(biāo),,,,,,,,表示擊中目標(biāo);因?yàn)樯鋼?/span>次,故以每個(gè)隨機(jī)數(shù)為一組,代表射擊次的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了如下組隨機(jī)數(shù):
據(jù)此估計(jì),該射擊運(yùn)動(dòng)員射擊次至少擊中次的概率為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com