(本小題共16分)已知.
(1)若函數(shù)在區(qū)間上有極值,求實(shí)數(shù)的取值范圍;
(2)若關(guān)于的方程有實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;
(3)當(dāng),時(shí),求證:.
解:(1),
當(dāng)時(shí),;當(dāng)時(shí),;
函數(shù)在區(qū)間(0,1)上為增函數(shù);在區(qū)間為減函數(shù) -------------------------3分
當(dāng)時(shí),函數(shù)取得極大值,而函數(shù)在區(qū)間有極值.
,解得. ---------------------------5分
(2)由(1)得的極大值為,令,所以當(dāng)時(shí),函數(shù)取得最小值,又因?yàn)榉匠?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052503382931253158/SYS201205250340450000607086_DA.files/image018.png">有實(shí)數(shù)解,那么,即,所以實(shí)數(shù)的取值范圍是:. ----------10分
(另解:,,
令,所以,當(dāng)時(shí),
當(dāng)時(shí),;當(dāng)時(shí),
當(dāng)時(shí),函數(shù)取得極大值為
當(dāng)方程有實(shí)數(shù)解時(shí),.)
(3)函數(shù)在區(qū)間為減函數(shù),而,
,即
--------------12分
即,而,
結(jié)論成立. ----------------------16分
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三下學(xué)期數(shù)學(xué)綜合練習(xí)(1) 題型:解答題
(本小題共16分)已知橢圓的中心為坐標(biāo)原點(diǎn)O,橢圓短半軸長(zhǎng)為1,動(dòng)點(diǎn) 在直線上.
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)求以O(shè)M為直徑且被直線截得的弦長(zhǎng)為2的圓的方程;
(3)設(shè)F是橢圓的右焦點(diǎn),過點(diǎn)F作OM的垂線與以O(shè)M為直徑的圓交于點(diǎn)N.求證:線段ON的長(zhǎng)為定值,并求出這個(gè)定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省姜堰市高三第一學(xué)期學(xué)情調(diào)研數(shù)學(xué)試卷 題型:解答題
(本小題共16分)
已知M(p, q)為直線x+y-m=0與曲線y=-的交點(diǎn),且p<q,若f(x)=,λ、μ為正實(shí)數(shù)。求證:|f()-f()|<|p-q|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省姜堰市高三第一學(xué)期學(xué)情調(diào)研數(shù)學(xué)試卷 題型:解答題
(本小題共16分)
已知M(p, q)為直線x+y-m=0與曲線y=-的交點(diǎn),且p<q,若f(x)=,λ、μ為正實(shí)數(shù)。求證:|f()-f()|<|p-q|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省姜堰市高三學(xué)情調(diào)查數(shù)學(xué)試卷 題型:解答題
(本小題共16分)
已知M(p, q)為直線x+y-m=0與曲線y=-的交點(diǎn),且p<q,若f(x)=,λ、μ為正實(shí)數(shù)。求證:|f()-f()|<|p-q|
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com