【題目】阿爾法狗(AlphaGo)是第一個(gè)擊敗人類職業(yè)圍棋選手、第一個(gè)戰(zhàn)勝圍棋世界冠軍的人工智能程序,由谷歌(Google)公司的團(tuán)隊(duì)開發(fā).其主要工作原理是“深度學(xué)習(xí)”.2017 年5 月,在中國(guó)烏鎮(zhèn)圍棋峰會(huì)上,它與排名世界第一的世界圍棋冠軍柯潔對(duì)戰(zhàn),以3 比0 的總比分獲勝.圍棋界公認(rèn)阿爾法圍棋的棋力已經(jīng)超過(guò)人類職業(yè)圍棋頂尖水平.

為了激發(fā)廣大中學(xué)生對(duì)人工智能的興趣,某市教育局組織了一次全市中學(xué)生“人工智能”軟件設(shè)計(jì)競(jìng)賽,從參加比賽的學(xué)生中隨機(jī)抽取了30 名學(xué)生,并把他們的比賽成績(jī)按五個(gè)等級(jí)進(jìn)行了統(tǒng)計(jì),得到如下數(shù)據(jù)表:

成績(jī)等級(jí)

成績(jī)(分)

5

4

3

2

1

人數(shù)(名)

4

6

10

7

3

(1)根據(jù)上面的統(tǒng)計(jì)數(shù)據(jù),試估計(jì)從本市參加比賽的學(xué)生中任意抽取一人,其成績(jī)等級(jí)為“”的

概率;

(2)根據(jù)(I)的結(jié)論,若從該地區(qū)參加比賽的學(xué)生(參賽人數(shù)很多)中任選3 人,記表示抽到成績(jī)等級(jí)為“”的學(xué)生人數(shù),求 的分布列及其數(shù)學(xué)期望

(3)從這30 名學(xué)生中,隨機(jī)選取2 人,求“這兩個(gè)人的成績(jī)之差大于1分”的概率.

【答案】(1);(2)見解析;(3)

【解析】分析:(Ⅰ)根據(jù)統(tǒng)計(jì)數(shù)據(jù),利用古典概型及其概率的計(jì)算公式,即可求解其成績(jī)等級(jí)為“”的概率;

(Ⅱ)由題意,得到隨機(jī)變量可取,且服從二項(xiàng)分布,求得相應(yīng)的概率,列出分

(Ⅲ)設(shè)從名學(xué)生中,隨機(jī)選取人,記兩個(gè)人的成績(jī)分別為,得到基本事件的總數(shù)為 ,不妨設(shè),分類討論即可求解所求的額概率.

詳解:(1)根據(jù)統(tǒng)計(jì)數(shù)據(jù)可知,從本地區(qū)參加比賽的30名中學(xué)生中任意抽取一人,其成績(jī)等級(jí)為“”的概率為:

即從本地區(qū)參加比賽的學(xué)生中任意抽取一人,其成績(jī)等級(jí)為“”的概率為:.

(2)由題意知隨機(jī)變量可取,則.

,

所以的分布列為:

0

1

2

3

,所求期望值為1

(3)設(shè)事件:從這30 名學(xué)生中,隨機(jī)選取2人,這兩個(gè)人的成績(jī)之差大于1分.

設(shè)從這30 名學(xué)生中,隨機(jī)選取2人,記兩個(gè)人的成績(jī)分別為,

則基本事件的總數(shù)為,不妨設(shè),

當(dāng)時(shí),,基本事件的個(gè)數(shù)為

當(dāng)時(shí),,基本事件的個(gè)數(shù)為;

當(dāng) 時(shí),,基本事件的個(gè)數(shù)為;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).

1)求實(shí)數(shù)的取值范圍;

2)設(shè)兩個(gè)極值點(diǎn)分別為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)ax2(a2b)xaln x(abR)

()當(dāng)b1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;

()當(dāng)a=-1,b0時(shí),證明:f(x)ex>x2x1(其中e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程(為參數(shù)),直線的參數(shù)方程(為參數(shù)).

1)求曲線在直角坐標(biāo)系中的普通方程;

2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,當(dāng)曲線截直線所得線段的中點(diǎn)極坐標(biāo)為時(shí),求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圓錐(其中為頂點(diǎn),為底面圓心)的側(cè)面積與底面積的比是,則圓錐與它外接球(即頂點(diǎn)在球面上且底面圓周也在球面上)的體積比為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱側(cè)面

(1)求證:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的內(nèi)接等邊三角形的面積為(其中為坐標(biāo)原點(diǎn)).

(1)試求拋物線的方程;

(2)已知點(diǎn)兩點(diǎn)在拋物線上,是以點(diǎn)為直角頂點(diǎn)的直角三角形.

①求證:直線恒過(guò)定點(diǎn);

②過(guò)點(diǎn)作直線的垂線交于點(diǎn),試求點(diǎn)的軌跡方程,并說(shuō)明其軌跡是何種曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代有著輝煌的數(shù)學(xué)研究成果,《周牌算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》等10部專著是了解我國(guó)古代數(shù)學(xué)的重要文獻(xiàn).10部專著中有5部產(chǎn)生于魏晉南北朝時(shí)期.某中學(xué)擬從這10部專著中選擇2部作為數(shù)學(xué)文化課外閱讀教材則所選2部專著中至少有一部是魏晉南北朝時(shí)期的專著的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,為正三角形,,,為線段的中點(diǎn).

1)求證:平面

2)若,,求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案