已知函數(shù),
(1) 設(其中的導函數(shù)),求的最大值;
(2) 證明: 當時,求證:  ;
(3) 設,當時,不等式恒成立,求的最大值

(1),
所以
時,;當時,
因此,上單調(diào)遞增,在上單調(diào)遞減.
因此,當時,取得最大值
(2)當時,
由(1)知:當時,,即
因此,有
(3)不等式化為
所以對任意恒成立.
,則,

,
所以函數(shù)上單調(diào)遞增.
因為,
所以方程上存在唯一實根,且滿足
,即,當,即,
所以函數(shù)上單調(diào)遞減,在上單調(diào)遞增.
所以
所以
故整數(shù)的最大值是

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分) 設的極小值為,其導函數(shù)的圖像開口向下且經(jīng)過點.
(Ⅰ)求的解析式;(Ⅱ)方程有唯一實數(shù)解,求的取值范圍.
(Ⅲ)若對都有恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)當時,求函數(shù)的圖象在點處的切線方程;
(Ⅱ)討論函數(shù)的單調(diào)性;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)(1)若函數(shù)處與直線相切;
(1) ①求實數(shù)的值;      ②求函數(shù)上的最大值;
(2)當時,若不等式對所有的都成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),
①求函數(shù)的單調(diào)區(qū)間。
②若函數(shù)的圖象在點(2,)處的切線的傾斜角為,對任意的,函數(shù)在區(qū)間上總不是單調(diào)函數(shù),求m取值范圍
③求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題15分)已知函數(shù)是奇函數(shù),且圖像在點 為自然對數(shù)的底數(shù))處的切線斜率為3.
(1)  求實數(shù)、的值;
(2)  若,且對任意恒成立,求的最大值;
(3)  當時,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)為實數(shù)).
(I)若處有極值,求的值;
(II)若上是增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)
(1)求的單調(diào)區(qū)間;
(2)求上的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)上是增函數(shù),在上是減函數(shù),且方程有三個根,它們分別是
(1)求的值;    (2)求證:        (3)求的取值范圍.

查看答案和解析>>

同步練習冊答案