【題目】某次數(shù)學(xué)知識比賽中共有6個不同的題目,每位同學(xué)從中隨機抽取3個題目進行作答,已知這6個題目中,甲只能正確作答其中的4個,而乙正確作答每個題目的概率均為且甲、乙兩位同學(xué)對每個題目的作答都是相互獨立、互不影響的.

(1)求甲、乙兩位同學(xué)總共正確作答3個題目的概率;

(2)若甲、乙兩位同學(xué)答對題目個數(shù)分別是,由于甲所在班級少一名學(xué)生參賽,故甲答對一題得15分,乙答對一題得10分,求甲乙兩人得分之和的期望.

【答案】(1);(2)50.

【解析】分析:(1)由題意可知共答對3題可以分為3種情況:甲答對1題乙答對2題;甲答對2題乙答對1題;甲答對3題乙答對0題.由此能求出甲、乙兩位同學(xué)總共正確作答3個題目的概率.
(2)的所有取值有12,3.分別求出相應(yīng)的概率,由此能求出,由題意可知,故.利用,得

詳解:

(1)由題意可知共答對3題可以分為3種情況:甲答對1題乙答對2題;甲答對2題乙答對1題;甲答對3題乙答對0題.故所求的概率

.

(2)的所有取值有1,2,3.

,,.

由題意可知.,所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,BC的對邊分別為a,b,c, 且, 若.

(1)求角B的大;

(2)若, 且△ABC的面積為, 求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,則f0+f1+f2+f3++f2019=( 。

A. 0B. 505C. 1010D. 2020

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】改革開放以來,伴隨著我國經(jīng)濟持續(xù)增長,戶均家庭教育投入戶均家庭教育投入是指一個家庭對家庭成員教育投入的總和也在不斷提高我國某地區(qū)2012年至2018年戶均家庭教育投入單位:千元的數(shù)據(jù)如表:

年份

2012

2013

2014

2015

2016

2017

2018

年份代號t

1

2

3

4

5

6

7

戶均家庭教育投入y

y關(guān)于t的線性回歸方程;

利用中的回歸方程,分析2012年至2018年該地區(qū)戶均家庭教育投入的變化情況,并預(yù)測2019年該地區(qū)戶均家庭教育投入是多少.

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項質(zhì)量指標值,由測量表得如下頻數(shù)分布表:

質(zhì)量指標值分組

[75,85)

[85,95)

[95,105)

[105,115)

[115,125)

頻數(shù)

6

26

38

22

8

I)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖:

II)估計這種產(chǎn)品質(zhì)量指標值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

III)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合質(zhì)量指標值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%的規(guī)定?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把半橢圓與圓弧合成的曲線稱作曲圓,其中F為半橢圓的右焦點,A是圓弧x軸的交點,過點F的直線交曲圓PQ兩點,則的周長取值范圍為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點E(﹣4,0)和F40),過點E的直線l與過點F的直線m相交于點M,設(shè)直線l的斜率為k1,直線m的斜率為k2,如果k1k2

1)記點M形成的軌跡為曲線C,求曲線C的軌跡方程.

2)已知P2,m)、Q2,﹣m)(m0)是曲線C上的兩點,A,B是曲線C上位于直線PQ兩側(cè)的動點,當(dāng)A,B運動時,滿足∠APQ=∠BPQ,試問直線AB的斜率是否為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案