【題目】已知直角坐標(biāo)系的原點(diǎn)和極坐標(biāo)系的極點(diǎn)重合,軸非負(fù)半軸與極軸重合, 單位長(zhǎng)度相同, 在直角坐標(biāo)系下, 曲線的參數(shù)方程為,為參數(shù)) .

(1) 寫出曲線的極坐標(biāo)方程;

(2) 直線的極坐標(biāo)方程為,求曲線與直線在平面直角坐標(biāo)系中的交點(diǎn)坐標(biāo) .

【答案】(1)曲線的極坐標(biāo)方程為(2)

【解析】

(1)由曲線C的參數(shù)方程,能求出曲線C的普通方程,由此能求出曲線C的極坐標(biāo)方程.

(2)直線l的極坐標(biāo)方程化為直角坐標(biāo)方程,得xy﹣2=0,聯(lián)立,能求出曲線C與直線l的交點(diǎn)坐標(biāo).

(1)曲線的參數(shù)方程為,(為參數(shù))

曲線的普通方程為

曲線的極坐標(biāo)方程為

(2)直線的極坐標(biāo)方程為,

將直線的極坐標(biāo)方程化為直角坐標(biāo)坐標(biāo)方程,得

聯(lián)立,解得,或

曲線與直線的交點(diǎn)坐標(biāo)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新冠肺炎疫情期間,為確保停課不停學(xué),各校精心組織了線上教學(xué)活動(dòng).開學(xué)后,某校采用分層抽樣的方法從三個(gè)年級(jí)的學(xué)生中抽取一個(gè)容量為150的樣本進(jìn)行關(guān)于線上教學(xué)實(shí)施情況的問卷調(diào)查.已知該校高一年級(jí)共有學(xué)生660人,抽取的樣本中高二年級(jí)有50人,高三年級(jí)有45人.下表是根據(jù)抽樣調(diào)查情況得到的高二學(xué)生日睡眠時(shí)間(單位:h)的頻率分布表.

分組

頻數(shù)

頻率

5

0.10

8

0.16

x

0.14

12

y

10

0.20

z

合計(jì)

50

1

1)求該校學(xué)生總數(shù);

2)求頻率分布表中實(shí)數(shù)x,y,z的值;

3)已知日睡眠時(shí)間在區(qū)間[6,6.5)5名高二學(xué)生中,有2名女生,3名男生,若從中任選2人進(jìn)行面談,則選中的2人恰好為一男一女的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

2)若函數(shù)在區(qū)間上無零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京地鐵八通線西起四惠站,東至土橋站,全長(zhǎng)18.964km,共設(shè)13座車站.目前八通線執(zhí)行2014年12月28日制訂的計(jì)價(jià)標(biāo)準(zhǔn),各站間計(jì)程票價(jià)(單位:元)如下:

四惠

3

3

3

3

4

4

4

5

5

5

5

5

四惠東

3

3

3

4

4

4

5

5

5

5

5

高碑店

3

3

3

4

4

4

4

5

5

p>5

傳媒大學(xué)

3

3

3

4

4

4

4

5

5

雙橋

3

3

3

4

4

4

4

4

管莊

3

3

3

3

4

4

4

八里橋

3

3

3

3

4

4

通州北苑

3

3

3

3

3

果園

3

3

3

3

九棵樹

3

3

3

梨園

/p>

3

3

臨河里

3

土橋

四惠

四惠東

高碑店

傳媒大學(xué)

雙橋

管莊

八里橋

通州北苑

果園

九棵樹

梨園

臨河里

土橋

(Ⅰ)在13座車站中任選兩個(gè)不同的車站,求兩站間票價(jià)不足5元的概率;

(Ⅱ)甲乙二人從四惠站上車乘坐八通線,各自任選另一站下車(二人可同站下車),記甲乙二人乘車購票花費(fèi)之和為X元,求X的分布列;

(Ⅲ)若甲乙二人只乘坐八通線,甲從四惠站上車,任選另一站下車,記票價(jià)為元;乙從土橋站上車,任選另一站下車,記票價(jià)為元.試比較的方差大。ńY(jié)論不需要證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)設(shè),若曲線,有公共點(diǎn),且在點(diǎn)處的切線相同,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(Ⅰ)試討論的單調(diào)性;

(Ⅱ)記的零點(diǎn)為,的極小值點(diǎn)為,當(dāng)時(shí),求證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是某市年至年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的條形圖.

(1)若從年到年的五年中,任意選取兩年,則這兩年的投資額的平均數(shù)不少于億元的概率;

(2)為了預(yù)測(cè)該市年的環(huán)境基礎(chǔ)設(shè)施投資額,建立了與時(shí)間變量的兩個(gè)線性回歸模型.根據(jù)年至年的數(shù)據(jù)(時(shí)間變量的值依次為)建立模型①:;根據(jù)年至年的數(shù)據(jù)(時(shí)間變量的值依次為)建立模型②:

(i)分別利用這兩個(gè)模型,求該地區(qū)年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測(cè)值;

(ii)你認(rèn)為用哪個(gè)模型得到的預(yù)測(cè)值更可靠?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】先后拋擲一枚骰子兩次,將出現(xiàn)的點(diǎn)數(shù)分別記為.

1)設(shè)向量,,求的概率;

2)求在點(diǎn)數(shù)之和不大于5的條件下,中至少有一個(gè)為2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定點(diǎn)M(-3,0),Q、P分別是x軸、y軸上的動(dòng)點(diǎn),且使MP⊥PQ,點(diǎn)N在直線PQ上,

(1)求動(dòng)點(diǎn)N的軌跡C的方程.

(2)過點(diǎn)T(-1,0)作直線l與軌跡C交于兩點(diǎn)A、B,問:在x軸上是否存在一點(diǎn)D,使△ABD為等邊三角形;若存在,試求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案