【題目】如圖,將一個邊長為的正三角形分成個全等的正三角形,第一次挖去中間的一個小三角形,將剩下的個小正三角形,分別再從中間挖去一個小三角形,保留它們的邊,重復操作以上的做法,得到的集合為希爾賓斯基三角形.是前次挖去的小三角形面積之和(如是第次挖去的中間小三角形面積,是前次挖去的個小三角形面積之和),則 _____________ , __________.

【答案】

【解析】

本題要逐步觀察,每一次挖去的三角形都是前一次三角形的,每一次只挖去個三角形,由此規(guī)律不難發(fā)現(xiàn)的關系,然后根據(jù)累加法即可求出的值.

由題意,可知:

原等邊三角形的面積

由題意,可知:

每次都是在前一次的基礎上挖去幾個相同大小的三角形.

第一次挖去的三角形是原等邊三角形的,且第一次只挖去1個三角形;

第二次挖去的三角形是原等邊三角形的,且第二次只挖去3個三角形;

第三次挖去的三角形是原等邊三角形的,且第三次只挖去個三角形;

次挖去的三角形是原等邊三角形的,且第次只挖去個三角形;

,

,

,

,

故答案為:;

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

1)求函數(shù)的單調區(qū)間;

2)若函數(shù)有兩個零點,求滿足條件的最小正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐中,兩兩垂直,,,分別是的中點.

1)證明:平面

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐中,兩兩垂直,,,分別是的中點.

1)證明:平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E:,直線l不過原點O且不平行于坐標軸,l與E有兩個交點A,B,線段AB的中點為M.

,點K在橢圓E上,分別為橢圓的兩個焦點,求的范圍;

證明:直線OM的斜率與l的斜率的乘積為定值;

若l過點,射線OM與橢圓E交于點P,四邊形OAPB能否為平行四邊形?若能,求此時直線l斜率;若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱椎中,四邊形為菱形,,,,分別為,中點..

1)求證:

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知三棱錐,記二面角的平面角為,直線與平面所成的角為,直線所成的角為,則( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知是橢圓的右焦點,直線與橢圓相切于點

1)若,求;

2)若,,求橢圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】改革開放年,我國經濟取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強.為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進行一次全市駕駛員交通安全意識調查.隨機抽取男女駕駛員各人,進行問卷測評,所得分數(shù)的頻率分布直方圖如圖所示在分以上為交通安全意識強.

的值,并估計該城市駕駛員交通安全意識強的概率;

已知交通安全意識強的樣本中男女比例為,完成下列列聯(lián)表,并判斷有多大把握認為交通安全意識與性別有關;

安全意識強

安全意識不強

合計

男性

女性

合計

用分層抽樣的方式從得分在分以下的樣本中抽取人,再從人中隨機選取人對未來一年內的交通違章情況進行跟蹤調查,求至少有人得分低于分的概率.

附:其中

查看答案和解析>>

同步練習冊答案