設(shè)f(x)是(-∞,+∞)上的奇函數(shù),f(x+2)=-f(x),當(dāng)0≤x≤1時(shí),f(x)=x.
(1)求f(π)的值;
(2)當(dāng)-4≤x≤4時(shí),求f(x)的圖象與x軸所圍成圖形的面積;
(3)寫出(-∞,+∞)內(nèi)函數(shù)f(x)的單調(diào)區(qū)間.
(1)π-4.
(2)4
(3)遞增區(qū)間為[4k-1,4k+1](k∈Z),單調(diào)遞減區(qū)間[4k+1,4k+3](k∈Z)
【解析】
試題分析:解:(1)由f(x+2)=-f(x)得,
f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),
所以f(x)是以4為周期的周期函數(shù),
∴f(π)=f(-1×4+π)=f(π-4)=-f(4-π)=-(4-π)=π-4.
(2)由f(x)是奇函數(shù)與f(x+2)=-f(x),得:f[(x-1)+2]=-f(x-1)=f[-(x-1)],即f(1+x)=f(1-x).
故知函數(shù)y=f(x)的圖象關(guān)于直線x=1對(duì)稱.
又0≤x≤1時(shí),f(x)=x,且f(x)的圖象關(guān)于原點(diǎn)成中心對(duì)稱,則f(x)的圖象如圖所示.
當(dāng)-4≤x≤4時(shí),f(x)的圖象與x軸圍成的圖形面積為S,則
S=4S△OAB=4×=4.
(3)根據(jù)(1)(2)可知函數(shù)的圖形,根據(jù)奇偶性以及解析式和對(duì)稱中心可知,
在一個(gè)周期[-1,3]內(nèi)的圖象可知增區(qū)間為[-1,1],減區(qū)間為[1,3],那么推廣到整個(gè)實(shí)數(shù)域可知,都加上周期的整數(shù)倍即可,故可知函數(shù)f(x)的單調(diào)遞增區(qū)間為[4k-1,4k+1](k∈Z),單調(diào)遞減區(qū)間[4k+1,4k+3](k∈Z)
考點(diǎn):函數(shù)圖象與性質(zhì)
點(diǎn)評(píng):主要是考查了函數(shù)的圖象與性質(zhì)的綜合運(yùn)用,屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
A.1 B. C.0 D.-
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)試證:x=1是函數(shù)f(x)的一條對(duì)稱軸;
(2)證明函數(shù)f(x)是以4為周期的函數(shù),并求x∈[1,5]時(shí),f(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
A.a<-1或a> B.-l<a<
C.a(chǎn)< D.a(chǎn)<且a≠-1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練7練習(xí)卷(解析版) 題型:填空題
設(shè)f(x)是以2為周期的函數(shù),且當(dāng)x∈[1,3)時(shí),f(x)=x-2,則f(-1)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省高三上學(xué)期期末考試文科數(shù)學(xué) 題型:選擇題
設(shè)f(x)是定義在R上的奇函數(shù),且f(2)=0,當(dāng)x>0時(shí),有恒成立,則不等式 的解集是
A.(-2,0) ∪(2,+∞) B.(-2,0) ∪(0,2) C.(-∞,-2)∪(2,+∞) D.(-∞,-2)∪(0,2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com