設△ABC的內角為A、B、C所對的邊分別為a、b、c,若(3b-c)cosA=acosC,S△ABC=
2
,則
BA
AC
=
-1
-1
分析:先利用正弦定理及和角的三角函數(shù),可求cosA的值,進而可求sinA,利用三角形的面積,求得bc.利用向量的數(shù)量積公式,即可得到結論.
解答:解:∵(3b-c)cosA=acosC∴由正弦定理,可得:3sinBcosA-sinCcosA=sinAcosC
∴3sinBcosA=sinAcosC+sinCcosA
∴3sinBcosA=sin(A+C)=sinB
∴cosA=
1
3
,sinA=
2
2
3

S△ABC=
2

1
2
bcsinA=
2
3
bc=
2

∴bc=3
∵cosA=
1
3

∴cos<
BA
,
AC
>=-
1
3

BA
AC
=bccos<
BA
AC
>=-1
故答案為:-1
點評:本題考查正弦定理,考查三角形的面積公式,解題的關鍵是利用正弦定理,進行邊角互化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設△ABC的內角,A、B、C的對邊分別為a、b、c,且A=60°,c=3b,則tanB+tanC的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設△ABC的內角,A,B,C所對的邊長分別為a,b,c,若(a+c)(a-c)=b(b+c),則A=
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

設△ABC的內角為A、B、C所對的邊分別為a、b、c,若數(shù)學公式,則數(shù)學公式=________.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年山西省運城市康杰中學高考數(shù)學模擬試卷1(文科)(解析版) 題型:解答題

設△ABC的內角為A、B、C所對的邊分別為a、b、c,若,則=   

查看答案和解析>>

同步練習冊答案