下列命題中正確的是(  )
A、有一個面是多邊形,其余各面都是有一個公共頂點的三角形的幾何體叫棱錐
B、有兩個面平行,其余各面都是平行四邊形的幾何體叫棱柱
C、有一個面是多邊形,其余各面都是三角形的幾何體叫棱錐
D、有兩個面平行,其余各面都是四邊形的幾何體叫棱柱
考點:棱柱的結(jié)構(gòu)特征,棱錐的結(jié)構(gòu)特征,棱臺的結(jié)構(gòu)特征
專題:空間位置關(guān)系與距離
分析:根據(jù)棱柱,棱錐的概念性質(zhì)判斷,注意語言準(zhǔn)確.
解答: 解:BD錯在沒有其余各面都是有公共邊的四邊形,這個條件;
C錯在:其余各面都沒有一個公共頂點的三角形這個條件.
故選:A
點評:本題考查了空間幾何題的概念性質(zhì),屬于容易題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=ax2+bx+6與x軸交于AB兩點與y軸交點C,已知A(-1,0)、B(3,0).
(1)求拋物線及直線BC的解析式;
(2)若P為拋物線上位于直線BC上方的一點,求△PBC面積S的最大值并求出此時點P的坐標(biāo).
(3)直線BC與拋物線的對稱軸交于點D,M為拋物線上一動點,點N在x軸上,若以點DAMN為頂點的四邊形是平行四邊形,求出所有滿足條件的點M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以棱長為1的正方體各面的中心為頂點的多面體的內(nèi)切球的表面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1(-c,0),F(xiàn)2(c,0)是雙曲線的左、右焦點.若P為雙曲線右支上的一點,滿足
PF1
PF2
=4ac,∠F1PF2=
π
3
,則該雙曲線的離心率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
2
x+lnx的零點所在的區(qū)間是( 。
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
9-k
+
y2
k-4
=1
的離心率e<2,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+3ax.求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出如下四個命題:
①若向量
a
,
b
滿足
a
b
<0,則
a
b
的夾角為鈍角;
②命題“若a>b,則aa>2b-1”的否命題為“若a≤b,則aa≤2b-1”;
③“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1≤1”;
④向量
a
,
b
共線的充要條件:存在實數(shù)λ,使得
b
a

其中正確的命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)的最值:y=cos(x+
π
6
),x∈[0,
π
2
].

查看答案和解析>>

同步練習(xí)冊答案