精英家教網 > 高中數學 > 題目詳情
已知p:?x∈R,mx2+2≤0,q:?x∈R,x2-2mx+1>0,若p∨q為假命題,則實數m的取值范圍是( 。
分析:已知p:?x∈R,mx2+2≤0,q:?x∈R,x2-2mx+1>0,分別解出命題p和q,根據p∨q為假命題,分類進行求解;
解答:解:∵p:?x∈R,mx2+2≤0,
∴m<0,
∵q:?x∈R,x2-2mx+1>0,
∴△=4m2-4<0,
∴-1<m<1,
∵p∨q為假命題,
∴p為假命題,q也為假命題,
∵p為假命題,則m≥0,
q為假命題,則m≥1或m≤-1,
∴實數m的取值范圍是m≥1,即[1,+∞)
故選A.
點評:復合命題的真假與構成其簡單命題的真假的關系是解決復合命題真假的依據:p且q的真假,當p,q全真則真,有假則假;p或q的真假,p,q中有真則真,全假則假;非p的真假與p的真假相反.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知p:?x∈R,sinx+cosx>m,q:?x∈R,x2+m+1<0.若p∨q為真,p∧q為假,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知p:?x∈R,m<x2+
1x2
恒成立;q:方程4x2+4(m-2)x+1=0無實根,若p∨q為真命題,p∧q為假命題,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知p:?x∈R,mx2+1≤0,q:?x∈R,x2+mx+1>0,若pVq為假命題,則實數m的取值范圍為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知p:?x∈R,cosx>m;q:?x∈R,x2+mx+1<0.若p∨q為真,p∧q為假,則實數m的取值范圍是
-2≤m<-1,或m>2
-2≤m<-1,或m>2

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知p:?x∈R,m<x2+
1
x2
恒成立;q:方程4x2+4(m-2)x+1=0無實根,若p∨q為真命題,p∧q為假命題,求實數m的取值范圍.

查看答案和解析>>

同步練習冊答案