(本小題滿分12分)
定義在上的奇函數(shù),已知當(dāng)時,
(1)寫出上的解析式
(2)求上的最大值
(3)若上的增函數(shù),求實數(shù)的范圍。

(1)(2)當(dāng)時,最大值為,當(dāng)時,最大值為,當(dāng)時,最大值為(3)

解析試題分析:(1)是奇函數(shù)
(2)設(shè)函數(shù)變形為對稱軸,當(dāng)時,最大值,當(dāng)時,最大值,當(dāng)時,最大值
(3)函數(shù)是增函數(shù),對稱軸,
考點(diǎn):求分段函數(shù)解析式最值及單調(diào)性的應(yīng)用
點(diǎn)評:本題第二問中求最值注意參數(shù)范圍的討論

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù),記
(Ⅰ)判斷的奇偶性,并證明;
(Ⅱ)對任意,都存在,使得,.若,求實數(shù)的值;
(Ⅲ)若對于一切恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)定義域為,且.
設(shè)點(diǎn)是函數(shù)圖像上的任意一點(diǎn),過點(diǎn)分別作直線軸的垂線,垂足分別為

(1)寫出的單調(diào)遞減區(qū)間(不必證明);(4分)
(2)設(shè)點(diǎn)的橫坐標(biāo),求點(diǎn)的坐標(biāo)(用的代數(shù)式表示);(7分)
(3)設(shè)為坐標(biāo)原點(diǎn),求四邊形面積的最小值.(7分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題9分)已知函數(shù)。
(Ⅰ)若上的最小值是,試解不等式;
(Ⅱ)若上單調(diào)遞增,試求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)已知是定義在[-1,1]上的奇函數(shù),當(dāng),且時有.
(1)判斷函數(shù)的單調(diào)性,并給予證明;
(2)若對所有恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分15分) 已知函數(shù)f(x)=-1+2sinxcosx+2cos2x.
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)求f(x)圖象上與原點(diǎn)最近的對稱中心的坐標(biāo);
(3)若角α,β的終邊不共線,且f(α)=f(β),求tan(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
定義在上的偶函數(shù),已知當(dāng)時的解析式
(Ⅰ)寫出上的解析式;
(Ⅱ)求上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題12分)(1)已知函數(shù),問方程在區(qū)間[-1,0]內(nèi)是否有
解,為什么?
(2)若方程在(0,1)內(nèi)恰有一解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分) 如圖,有一塊矩形空地,要在這塊空地上辟一個內(nèi)接四邊形為綠地,使其四個頂點(diǎn)分別落在矩形的四條邊上,已知AB=>2),BC=2,且AE=AH=CF=CG,設(shè)AE=,綠地面積為.

(1)寫出關(guān)于的函數(shù)關(guān)系式,并指出這個函數(shù)的定義域;
(2)當(dāng)AE為何值時,綠地面積最大?  (10分) 

查看答案和解析>>

同步練習(xí)冊答案