【題目】在平面直角坐標(biāo)系中,曲線參數(shù)方程為為參數(shù)),將曲線上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)變?yōu)樵瓉淼?/span>,得到曲線.

1)求曲線的普通方程;

2)過點(diǎn)且傾斜角為的直線與曲線交于兩點(diǎn),求取得最小值時(shí)的值.

【答案】(1) ;(2)

【解析】

1)利用消去參數(shù),求得曲線的直角坐標(biāo)方程.根據(jù)坐標(biāo)變換的知識(shí)求得的普通方程.

2)設(shè)出直線的參數(shù)方程,代入的方程并寫出根與系數(shù)關(guān)系,求得弦長(zhǎng)的表達(dá)式,并利用三角函數(shù)最值的求法求得取得最小值時(shí)的值.

1)將曲線參數(shù)方程為參數(shù))的參數(shù)消去,得到直角坐標(biāo)方程為,設(shè)上任意一點(diǎn)為,經(jīng)過伸縮變換后的坐標(biāo)為,由題意得:

,故

2)過點(diǎn)傾斜角為的直線的參數(shù)方程為:為參數(shù)),帶入的方程得:

對(duì)于的參數(shù)分別為,,

故當(dāng)時(shí),.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省普通高中學(xué)業(yè)水平考試成績(jī)按人數(shù)所占比例依次由高到低分為,,,,五個(gè)等級(jí),等級(jí)等級(jí),等級(jí),等級(jí)共.其中等級(jí)為不合格,原則上比例不超過.該省某校高二年級(jí)學(xué)生都參加學(xué)業(yè)水平考試,先從中隨機(jī)抽取了部分學(xué)生的考試成績(jī)進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如圖所示.若該校高二年級(jí)共有1000名學(xué)生,則估計(jì)該年級(jí)拿到級(jí)及以上級(jí)別的學(xué)生人數(shù)有(

A.45B.660C.880D.900

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:Cx=若不建隔熱層,每年能源消耗費(fèi)用為8萬元。設(shè)fx)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和。

)求k的值及f(x)的表達(dá)式。

)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

(1)求函數(shù)的極值;

(2)問:是否存在實(shí)數(shù),使得有兩個(gè)相異零點(diǎn)?若存在,求出的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)又本垂直于軸,與橢圓交于兩點(diǎn),點(diǎn)在直線上,.

1)求點(diǎn)的軌跡的方程;

2)直線與橢圓相交于,與曲線相切于點(diǎn),為坐標(biāo)原點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),為自然對(duì)數(shù)的底數(shù)).

(1)求曲線處的切線的方程;

(2)若對(duì)于任意實(shí)數(shù),恒成立,試確定的取值范圍;

(3)當(dāng)時(shí),函數(shù)上是否存在極值?若存在,請(qǐng)求出極值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線上的點(diǎn)到焦點(diǎn)的距離為2.

1)求拋物線的方程;

2)如圖,點(diǎn)是拋物線上異于原點(diǎn)的點(diǎn),拋物線在點(diǎn)處的切線與軸相交于點(diǎn),直線與拋物線相交于兩點(diǎn),求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)對(duì)任意,,,都有恒成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)是直角斜邊上一動(dòng)點(diǎn),將直角沿著翻折,使構(gòu)成直二面角,則翻折后的最小值是_______

查看答案和解析>>

同步練習(xí)冊(cè)答案