(2005江西,22)如下圖,設拋物線C的焦點為F,動點P在直線lxy2=0上運動,過P作拋物線C的兩條切線PAPB,且與拋物線C分別相切于A、B兩點.

(1)求△APB的重心G的軌跡方程;

(2)證明:∠PFA=PFB

答案:略
解析:

解析:(1)設切點A、B坐標分別為(,)(,)(),∴切線AP的方程為;

切線BP的方程為,

解得P點的坐標為,

所以△APB的重心G的坐標為,

所以,由點P在直線l上運動,從而得到重心G軌跡方程為,即

(2)因為,

由于P點在拋物線外,則

,

同理有

∴∠AFP=PFB


提示:

剖析:本題考查拋物線、直線與拋物線位置關系以及軌跡方程的求法等綜合知識,考查數(shù)學思想和數(shù)學方法的應用能力.


練習冊系列答案
相關習題

同步練習冊答案