精英家教網 > 高中數學 > 題目詳情
我們知道,等差數列和等比數列有許多性質可以類比,現在給出一個命題:若數列{an}、{bn}是兩個等差數列,它們的前n項的和分別是Sn,Tn,則
an
bn
=
S2n-1
T2n-1

(1)請你證明上述命題;
(2)請你就數列{an}、{bn}是兩個各項均為正的等比數列,類比上述結論,提出正確的猜想,并加以證明.
(1)證明:
在等差數列{an}中,an=
a1+a2n-1
2
(n∈N*)
那么對于等差數列{an}、{bn}有:
an
bn
=
1
2
(a1+a2n-1)
1
2
(b1+b2n-1)
=
1
2
(a1+a2n-1)(2n-1)
1
2
(b1+b2n-1)(2n-1)
=
S2n-1
T2n-1

(2)猜想:數列{an}、{bn}是兩個各項均為正的等比數列,它們的前n項的積分別是
XnYn,則(
an
bn
) 2n-1=
X2n-1
Y2n-1
證明:在等比數列{an}中,
an2
=a1a2n-1=a2a2n-2=…(n∈N*)
an2n-1
=a1a2a3a2n-1(n∈N*)
那么對于等比數列{an}、{bn}有
(
an
bn
)
2n-1
=
a1a2a3a2n-1
b1b2b3b2n-1
=
X2n-1
Y2n-1
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:閱讀理解

類比是一個偉大的引路人.我們知道,等差數列和等比數列有許多相似的性質,請閱讀下表并根據等差數列的結論,類似的得出等比數列的兩個結論:
bn=
 
,dn=
 

等差數列{an} 等比數列{bn}
an=a1+(n-1)d bn=b1qn-1
an=am+(n-m)d bn
 
若cn=
a1+a2a3+∧+an
n
,
則數列{cn}為等差數列
若dn=
 

則數列{dn}為等比數列

查看答案和解析>>

科目:高中數學 來源: 題型:

我們知道,等差數列和等比數列有許多性質可以類比,現在給出一個命題:若數列{an}、{bn}是兩個等差數列,它們的前n項的和分別是Sn,Tn,則
an
bn
=
S2n-1
T2n-1

(1)請你證明上述命題;
(2)請你就數列{an}、{bn}是兩個各項均為正的等比數列,類比上述結論,提出正確的猜想,并加以證明.

查看答案和解析>>

科目:高中數學 來源:陜西省期中題 題型:解答題

我們知道,等差數列和等比數列有許多性質可以類比,現在給出一個命題:若數列{an}、
{bn}是兩個等差數列,它們的前n項的和分別是Sn,Tn,則
(1)請你證明上述命題;
(2)請你就數列{an}、{bn}是兩個各項均為正的等比數列,類比上述結論,提出正確的猜想,并加以證明.

查看答案和解析>>

科目:高中數學 來源:2009-2010學年廣東省梅州、揭陽兩市高三第一次聯考數學試卷(理科)(解析版) 題型:解答題

類比是一個偉大的引路人.我們知道,等差數列和等比數列有許多相似的性質,請閱讀下表并根據等差數列的結論,類似的得出等比數列的兩個結論:
bn=    ,dn=   
等差數列{an}等比數列{bn}
an=a1+(n-1)dbn=b1qn-1
an=am+(n-m)dbn   
若cn=
則數列{cn}為等差數列
若dn=    ,
則數列{dn}為等比數列

查看答案和解析>>

同步練習冊答案