【題目】如圖,面積為的正方形中有一個不規(guī)則的圖形,可按下面方法估計(jì)的面積:在正方形中隨機(jī)投擲個點(diǎn),若個點(diǎn)中有個點(diǎn)落入中,則的面積的估計(jì)值為,假設(shè)正方形的邊長為2, 的面積為1,并向正方形中隨機(jī)投擲個點(diǎn),以表示落入中的點(diǎn)的數(shù)目.
(I)求的均值;
(II)求用以上方法估計(jì)的面積時, 的面積的估計(jì)值與實(shí)際值之差在區(qū)間內(nèi)的概率.
附表:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三支球隊(duì)進(jìn)行某種比賽,其中兩隊(duì)比賽,另一隊(duì)當(dāng)裁判,每局比賽結(jié)束時,負(fù)方在下一局當(dāng)裁判.設(shè)各局比賽雙方獲勝的概率均為 ,各局比賽結(jié)果相互獨(dú)立,且沒有平局,根據(jù)抽簽結(jié)果第一局甲隊(duì)當(dāng)裁判
(1)求第四局甲隊(duì)當(dāng)裁判的概率;
(2)用X表示前四局中乙隊(duì)當(dāng)裁判的次數(shù),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知k∈R,直線l1:x+ky=0過定點(diǎn)P,直線l2:kx﹣y﹣2k+2=0過定點(diǎn)Q,兩直線交于點(diǎn)M,則|MP|+|MQ|的最大值是( )
A.2
B.4
C.4
D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x∈(-1,1)),有下列結(jié)論:
(1)x∈(-1,1),等式f(-x)+f(x)=0恒成立;
(2)m∈[0,+∞),方程|f(x)|=m有兩個不等實(shí)數(shù)根;
(3)x1,x2∈(-1,1),若x1≠x2,則一定有f(x1)≠f(x2);
(4)存在無數(shù)多個實(shí)數(shù)k,使得函數(shù)g(x)=f(x)-kx在(-1,1)上有三個零點(diǎn)
則其中正確結(jié)論的序號為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】①線性回歸方程對應(yīng)的直線至少經(jīng)過其樣本數(shù)據(jù)點(diǎn)中的一個點(diǎn);
②若兩個變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對值越接近于;
③在某項(xiàng)測量中,測量結(jié)果服從正態(tài)分布 ,若位于區(qū)域內(nèi)的概率為,則位于區(qū)域內(nèi)的概率為;
④對分類變量與的隨機(jī)變量K2的觀測值k來說,k越小,判斷“與有關(guān)系”的把握越大.其中真命題的序號為( )
A. ①④ B. ②④ C. ①③ D. ②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),( )
(1)若,求曲線在處的切線方程.
(2)對任意,總存在,使得(其中為的導(dǎo)數(shù))成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn , 且S2=6,S4=30,n∈N* , 數(shù)列{bn}滿足bnbn+1=an , b1=1
(1)求an , bn;
(2)求數(shù)列{bn}的前n項(xiàng)和為Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中, 平面是BC的中點(diǎn).
求證: ;
求異面直線AE與所成的角的大。
若G為中點(diǎn),求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的左右焦點(diǎn)分別為, ,左頂點(diǎn)為,上頂點(diǎn)為, 的面積為.
(1)求橢圓的方程;
(2)設(shè)直線: 與橢圓相交于不同的兩點(diǎn), , 是線段的中點(diǎn).若經(jīng)過點(diǎn)的直線與直線垂直于點(diǎn),求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com