已知直線的參數(shù)方程為,(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為.
(1)把圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)將直線向右平移h個(gè)單位,所得直線與圓C相切,求h.

(1);(2).

解析試題分析:本題考查直角坐標(biāo)系與極坐標(biāo)系之間的互化、參數(shù)的幾何意義、函數(shù)圖像的平移等基礎(chǔ)知識,考查學(xué)生的轉(zhuǎn)化能力和計(jì)算能力. 第一問,利用極坐標(biāo)方程與直角坐標(biāo)方程的互化公式可將圓C化為直角坐標(biāo)方程;第二問,直接將直線的參數(shù)方程進(jìn)行平移,消參,由于直線與圓相切,所以消參后的方程的判別式等于0,解出h的值.
試題解析:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/6b/5/vox5n.png" style="vertical-align:middle;" />,,所以圓C的直角坐標(biāo)方程為
.       4分
(Ⅱ)平移直線后,所得直線l¢的(t為參數(shù)).

因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/65/6/1r12q3.png" style="vertical-align:middle;" />與圓相切,所以
,即,
解得.         10分
考點(diǎn):1.極坐標(biāo)方程與直角坐標(biāo)方程的互化;2.參數(shù)方程;3.圖像平移.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐極系,并在兩種坐極系中取相同的長度單位.已知直線的極坐標(biāo)方程為),它與曲線為參數(shù))相交于兩點(diǎn)A和B,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

圓O1和圓O2的極坐標(biāo)方程分別為ρ=4cosθ,ρ=-4sinθ.
(1)把圓O1和圓O2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求經(jīng)過圓O1、圓O2交點(diǎn)的直線的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,直線的方程為,曲線的參數(shù)方程為
(1)已知在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,點(diǎn)的極坐標(biāo)為,判斷點(diǎn)與直線的位置關(guān)系;
(2)設(shè)點(diǎn)是曲線上的一個(gè)動(dòng)點(diǎn),求它到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的極坐標(biāo)方程為ρ2=,點(diǎn)F1,F2為其左、右焦點(diǎn),直線l的參數(shù)方程為(t為參數(shù),t∈R).
(1)求直線l和曲線C的普通方程.
(2)求點(diǎn)F1,F2到直線l的距離之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知☉O1和☉O2的極坐標(biāo)方程分別是ρ=2cosθ和ρ=2asinθ(a是非零常數(shù)).
(1)將兩圓的極坐標(biāo)方程化為直角坐標(biāo)方程.
(2)若兩圓的圓心距為,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線C的極坐標(biāo)方程是ρ=2sin θ,直線l的參數(shù)方程是 (t為參數(shù)).
(1)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)設(shè)直線lx軸的交點(diǎn)是MN是曲線C上一動(dòng)點(diǎn),求MN的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)).
(1)寫出直線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)曲線經(jīng)過伸縮變換得到曲線,設(shè)為曲線上任一點(diǎn),求的最小值,并求相應(yīng)點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在極坐標(biāo)系中,已知圓ρ=2cos θ與直線3ρcos θ+4ρsin θa=0相切,求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊答案