已知函數(shù)f(x)=x-
1x
,x∈(0,+∞).
(1)用函數(shù)單調(diào)性的定義證明:f(x)在其定義域上是單調(diào)增函數(shù);
(2)若f(3x-2)>f(9x),求x的取值范圍.
分析:(1)利用定義法證明單調(diào)性,按步驟:取,作差,判斷差的符號,得出結(jié)論,證明即可;
(2)由(1)函數(shù)是增函數(shù),由此可將不等式f(3x-2)>f(9x)轉(zhuǎn)化為3x-2>9x,解此指數(shù)型不等式,求x的取值范圍
解答:解:(1)任取x1,x2∈(0,+∞).令x1<x2
f(x1)-f(x2)=x1-
1
x1
-(x2-
1
x2
)=(x1-x2)+(
1
x2
-
1
x1
)=(x1-x2)×(1+
1
x1x2

∵x1,x2∈(0,+∞).x1<x2
∴x1-x2<0,1+
1
x1x2
>0
∴f(x1)-f(x2)<0,
故f(x)在其定義域上是單調(diào)增函數(shù);
(2)由(1)證明知f(x)在其定義域上是單調(diào)增函數(shù),又f(3x-2)>f(9x),
∴3x-2>9x,即3x-2>32x
∴x-2>2x,得x<-2
x的取值范圍是x<-2
點評:本題考查函數(shù)單調(diào)性的判斷與證明,解題的關(guān)鍵是熟練掌握定義法證明單調(diào)性的步驟及原理,能利用單調(diào)性靈活轉(zhuǎn)化不等式,達到化抽象不等式為具體不等式,解出不等式,本題考查了推理論證的能力及轉(zhuǎn)化化歸的能力,計算能力
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-2m2+m+3(m∈Z)為偶函數(shù),且f(3)<f(5).
(1)求m的值,并確定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在實數(shù)a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,請求出a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省東陽中學(xué)高三10月階段性考試數(shù)學(xué)理科試題 題型:022

已知函數(shù)f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值,若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.已知函數(shù)f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數(shù)”,則k的值是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年河南省許昌市長葛三高高三第七次考試數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知函數(shù)f(x)、g(x),下列說法正確的是( )
A.f(x)是奇函數(shù),g(x)是奇函數(shù),則f(x)+g(x)是奇函數(shù)
B.f(x)是偶函數(shù),g(x)是偶函數(shù),則f(x)+g(x)是偶函數(shù)
C.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)一定是奇函數(shù)或偶函數(shù)
D.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)可以是奇函數(shù)或偶函數(shù)

查看答案和解析>>

同步練習(xí)冊答案