【題目】以下四個命題中其中真命題個數(shù)是( ) ①為了了解800名學(xué)生的成績,打算從中抽取一個容量為40的樣本,考慮用系統(tǒng)抽樣,則分段的間隔k為40;
②線性回歸直線 = x+ 恒過樣本點的中心( , );
③隨機變量ξ服從正態(tài)分布N(2,σ2)(σ>0),若在(﹣∞,1)內(nèi)取值的概率為0.1,則在(2,3)內(nèi)的概率為0.4;
④若事件M和N滿足關(guān)系P(M∪N)=P(M)+P(N),則事件M和N互斥.
A.0
B.1
C.2
D.3

【答案】D
【解析】解:①為了了解800名學(xué)生的成績,打算從中抽取一個容量為40的樣本,考慮用系統(tǒng)抽樣,則分段的間隔k為 =20,故①錯;②線性回歸直線 = x+ 恒過樣本點的中心( ),故②對;③隨機變量ξ服從正態(tài)分布N(2,σ2)(σ>0),

若在(﹣∞,1)內(nèi)取值的概率為0.1,則在(1,2)內(nèi)的概率為0.5﹣0.1=0.4,

可得在(2,3)內(nèi)的概率為0.4,故③對;④若事件M和N滿足關(guān)系P(M∪N)=P(M)+P(N),

由P(M∪N)=P(M)+P(N)+P(M∩N),可得P(M∩N)=0,

即有M,N不可能同時發(fā)生,

所以事件M與N的關(guān)系是互斥的.故④對.

故選:D.

【考點精析】根據(jù)題目的已知條件,利用命題的真假判斷與應(yīng)用的相關(guān)知識可以得到問題的答案,需要掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x+1)lnx,g(x)=a(x﹣1)(a∈R).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)≥g(x)對任意的x∈[1,+∞)恒成立,求實數(shù)a的取值范圍;
(Ⅲ)求證:ln2ln3…lnn> (n≥2,n∈N+).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實數(shù)x,y滿足x2+y2﹣6x+8y﹣11=0,則 的最大值= , |3x+4y﹣28|的最小值=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足:a1=1,an+1﹣ansin2θ=sin2θcos2nθ.
(Ⅰ)當(dāng)θ= 時,求數(shù)列{an}的通項公式;
(Ⅱ)在(Ⅰ)的條件下,若數(shù)列{bn}滿足bn=sin ,Sn為數(shù)列{bn}的前n項和,求證:對任意n∈N* , Sn<3+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,點E是BC邊的中點,將△ABD沿BD折起,使平面ABD⊥平面BCD,連接AE,AC,DE,得到如圖2所示的幾何體.
(Ⅰ)求證:AB⊥平面ADC;
(Ⅱ)若AD=1,二面角C﹣AB﹣D的平面角的正切值為 ,求二面角B﹣AD﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c分別是△ABC的三個內(nèi)角A,B,C所對的邊,且滿足(2b﹣a)cosC=ccosA.
(Ⅰ)求角C的大小;
(Ⅱ)設(shè)y=﹣4 sin2 +2sin(C﹣B),求y的最大值并判斷當(dāng)y取得最大值時△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列判斷正確的是(
A.若事件A與事件B互斥,則事件A與事件B對立
B.函數(shù)y= (x∈R)的最小值為2
C.若直線(m+1)x+my﹣2=0與直線mx﹣2y+5=0互相垂直,則m=1
D.“p∧q為真命題”是“p∨q為真命題”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,直線l:x﹣ty﹣2=0.
(1)若直線l與曲線y=f(x)有且僅有一個公共點,求公共點橫坐標(biāo)的值;
(2)若0<m<n,m+n≤2,求證:f(m)>f(n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸非負(fù)半軸為極軸)中,圓C的方程為ρ=6sinθ.
(1)求圓C的直角坐標(biāo)方程;
(2)若點P(1,2),設(shè)圓C與直線l交于點A,B,求|PA|+|PB|的最小值.

查看答案和解析>>

同步練習(xí)冊答案