【題目】已知橢圓的離心率為,過左焦點的直線與橢圓交于,兩點,且線段的中點為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設上一個動點,過點與橢圓只有一個公共點的直線為,過點垂直的直線為,求證:的交點在定直線上,并求出該定直線的方程.

【答案】(Ⅰ);(Ⅱ)證明見解析,

【解析】

(Ⅰ)設,,根據(jù)點,都在橢圓上,代入橢圓方程兩式相減,根據(jù)“設而不求”的思想,結合離心率以及中點坐標公式、直線的斜率建立等式即可求解.

(Ⅱ)設,由對稱性,設,由,得橢圓上半部分的方程為,從而求出直線的方程,再由過點垂直的直線為,求出,兩方程聯(lián)立,消去,即可求解.

(Ⅰ)由題可知,直線的斜率存在.

,,由于點都在橢圓上,

所以①,②,

-②,化簡得

又因為離心率為,所以.

又因為直線過焦點,線段的中點為,

所以,,

代入③式,得,解得.

再結合,解得,,

故所求橢圓的方程為.

(Ⅱ)證明:設,由對稱性,設,由,得橢圓上半部分的方程為,,

過點且與橢圓只有一個公共點,所以,

所以,④

因為過點且與垂直,所以,⑤

聯(lián)立④⑤,消去,得

,所以,從而可得

所以的交點在定直線.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,平面四邊形中,,上的一點,的中點,以為折痕把折起,使點到達點的位置,且.

1)證明:平面平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在多面體ABCDPE中,四邊形ABCD是直角梯形,,平面平面,,,,的余弦值為,FBE中點,GPD中點.

1)求證:平面ABCD;

2)求平面BCE與平面ADE所成角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質量分別在,,,,(單位:克)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.

1)經(jīng)計算估計這組數(shù)據(jù)的中位數(shù);

2)現(xiàn)按分層抽樣從質量為的芒果中隨機抽取6個,再從這6個中隨機抽取3個,求這3個芒果中恰有1個在內的概率.

3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經(jīng)銷商提出如下兩種收購方案:

A:所有芒果以10/千克收購;

B:對質量低于250克的芒果以2/個收購,高于或等于250克的以3/個收購,通過計算確定種植園選擇哪種方案獲利更多?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左,右焦點分別為,M是橢圓E上的一個動點,且的面積的最大值為.

1)求橢圓E的標準方程,

2)若,,四邊形ABCD內接于橢圓E,,記直線AD,BC的斜率分別為,,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學準備組建“文科”興趣特長社團,由課外活動小組對高一學生文科、理科進行了問卷調查,問卷共100道題,每題1分,總分100分,該課外活動小組隨機抽取了200名學生的問卷成績(單位:分)進行統(tǒng)計,將數(shù)據(jù)按照,,分成5組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為“文科方向”學生,低于60分的稱為“理科方向”學生.

理科方向

文科方向

總計

110

50

總計

1)根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此判斷是否有99%的把握認為是否為“文科方向”與性別有關?

2)將頻率視為概率,現(xiàn)在從該校高一學生中用隨機抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中“文科方向”的人數(shù)為,若每次抽取的結果是相互獨立的,求的分布列、期望和方差.

參考公式:,其中.

參考臨界值:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面,,,.

1)求證:;

2)若,求平面和平面所成的角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線C,O為坐標原點,FC的右焦點,過F的直線與C的兩條漸近線的交點分別為M、N.OMN為直角三角形,則|MN|=

A. B. 3 C. D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線E過點,過拋物線E上一點作兩直線PMPN與圓C相切,且分別交拋物線EM、N兩點.

(1)求拋物線E的方程,并求其焦點坐標和準線方程;

(2)若直線MN的斜率為,求點P的坐標.

查看答案和解析>>

同步練習冊答案