若拋物線y2=-2px(p>0)上有一點M,其橫坐標(biāo)為-9.它到焦點的距離為10,求拋物線方程和M點的坐標(biāo).
y2=-4x,M(-9,6)或M(-9,-6)
【解析】本題考查拋物線的幾何性質(zhì),解題時要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件。
(1)(1)拋物線的開口向右,焦點在x軸的正半軸上,故可求焦點F坐標(biāo);
(2)利用點A(-2,3)到拋物線y2=2px(p>0)焦點F的距離為5,從而 利用定義故可求出拋物線的方程.
解:由拋物線定義知焦點為F(-,0),準(zhǔn)線為x=,
由題意設(shè)M到準(zhǔn)線的距離為|MN|, 則|MN|=|MF|=10, 即-(-9)=10,
∴p=2.故拋物線方程為y2=-4x,將M(-9,y)代入y2=-4x,解得y=±6,
∴M(-9,6)或M(-9,-6).
科目:高中數(shù)學(xué) 來源:遼寧省沈陽二中2011-2012學(xué)年高二上學(xué)期12月月考數(shù)學(xué)試題 題型:013
設(shè)經(jīng)過定點M(a,0)的直線與拋物線y2=2px相交于P,Q兩點,若為常數(shù),則a的值為
p
2p
-2p
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:044
已知拋物線y2=2px(p>0).過動點M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點A、B,|AB|≤2p.
(Ⅰ)求a的取值范圍;
(Ⅱ)若線段AB的垂直平分線交x軸于點N,求△NAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044
(Ⅰ)求a的取值范圍;
(Ⅱ)若線段AB的垂直平分線交x軸于點N,求△NAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:中學(xué)教材標(biāo)準(zhǔn)學(xué)案 數(shù)學(xué) 高二上冊 題型:044
已知拋物線y2=2px(p>0),過動點M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點A、B,①若|AB|≤2p,求a的取值范圍;②若線段AB的垂直平分線交AB于點Q,交x軸于點N,求直角三角形MNQ的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:新課程高中數(shù)學(xué)疑難全解 題型:044
如圖所示,已知拋物線y2=2px(p>0),過動點M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點A、B,且|AB|≤2p.
(1)求a的取值范圍;
(2)若線段AB的垂直平分線交x軸于點N,求△NAB面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com