【題目】設(shè)是公差不為零的等差數(shù)列,滿足數(shù)列的通項(xiàng)公式為

1)求數(shù)列的通項(xiàng)公式;

2將數(shù)列,中的公共項(xiàng)按從小到大的順序構(gòu)成數(shù)列請直接寫出數(shù)列的通項(xiàng)公式;

3是否存在正整數(shù) ,使得成等差數(shù)列?若存在,求出的值;若不存在,請說明理由

【答案】(1)(2)(3)存在正整數(shù)m11,n1;m2n3;m6n11使得b2,bmbn成等差數(shù)列

【解析】試題分析:(1)利用基本元的思想,將已知條件轉(zhuǎn)化為的形式,解方程組求得 的值,并求得的通項(xiàng)公式.(2)由于是首項(xiàng)為,公差為的等差數(shù)列,,,首項(xiàng)為,第二項(xiàng)為的等差數(shù)列,是首項(xiàng)為,公差為的等差數(shù)列,故通項(xiàng)公式為.(3) ,先假設(shè)存在這樣的數(shù),利用成等差數(shù)列,化簡得到,利用列舉法求得的值.

試題解析:

1設(shè)公差為,則,由性質(zhì)得,因?yàn)?/span>,所以,即,又由,解得,

所以的通項(xiàng)公式為

(2)

(3),假設(shè)存在正整數(shù)m、n,使得d5,dm,dn成等差數(shù)列,則d5dn2dm

所以, 化簡得:2m13

當(dāng)n2=-1,即n1時,m11,符合題意

當(dāng)n21,即n3時,m2,符合題意

當(dāng)n23,即n5時,m5(舍去) ;

當(dāng)n29,即n11時,m6,符合題意.

所以存在正整數(shù)m11n1;m2,n3;m6,n11

使得b2,bm,bn成等差數(shù)列

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形是正方形, , , , 都是等邊三角形, 、、分別是線段、的中點(diǎn),分別以、為折痕將四個等邊三角形折起,使得、、、四點(diǎn)重合于一點(diǎn),得到一個四棱錐.對于下面四個結(jié)論:

為異面直線; 直線與直線所成的角為

平面; 平面平面;

其中正確結(jié)論的個數(shù)有(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) , ,(a>0).若對任意實(shí)數(shù)x1 , 都存在正數(shù)x2 , 使得g(x2)=f(x1)成立,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是公差不為零的等差數(shù)列,滿足數(shù)列的通項(xiàng)公式為

1)求數(shù)列的通項(xiàng)公式;

2將數(shù)列,中的公共項(xiàng)按從小到大的順序構(gòu)成數(shù)列,請直接寫出數(shù)列的通項(xiàng)公式;

3是否存在正整數(shù) ,使得成等差數(shù)列?若存在,求出的值;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,半圓的直徑為 為直徑延長線上的一點(diǎn), , 為半圓上任意一點(diǎn),以為一邊作等邊三角形,設(shè) .

(1)當(dāng)為何值時,四邊形面積最大,最大值為多少;

(2)當(dāng)為何值時, 長最大,最大值為多少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個多面體的直觀圖、正視圖、側(cè)視圖、俯視圖如圖,M,N分別為A1B,B1C1的中點(diǎn).

下列結(jié)論中正確的個數(shù)有 (  )

①直線MN與A1C相交.

②MN⊥BC.

③MN∥平面ACC1A1.

④三棱錐N-A1BC的體積為=a3.

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)過點(diǎn)( ,1),且以橢圓短軸的兩個端點(diǎn)和一個焦點(diǎn)為頂點(diǎn)的三角形是等腰直角三角形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)M(x,y)是橢圓C上的動點(diǎn),P(p,0)是x軸上的定點(diǎn),求|MP|的最小值及取最小值時點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

I)若a=1,求在區(qū)間[0,3]上的最大值和最小值;

II)解關(guān)于x的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量m (sin ,1), =(1, cos ),函數(shù)f(x)=
(1)求函數(shù)f(x)的最小正周期;
(2)若f(α﹣ )= ,求f(2α+ )的值.

查看答案和解析>>

同步練習(xí)冊答案