平面內(nèi)與兩定點A1(-a,0),A2(a,o)(a>0)連線的斜率之積等于非零常數(shù)m的點的軌跡,加上A1,A2兩點所成的曲線C可以是圓、橢圓或雙曲線.那么當m滿足條件
m=-1
m=-1
時,曲線C是圓;當m滿足條件
m>0
m>0
 時,曲線C是雙曲線.
分析:設(shè)出動點M的坐標,利用斜率乘積求出曲線軌跡方程,然后討論 m的值,判斷曲線是圓、橢圓或雙曲線時m的值的情況.
解答:解:設(shè)動點為M,其坐標(x,y).
當x≠±a時,由條件可得k1•k2=
y
x-a
y
x+a
=
y2
x2-a2
=m,
即mx2-y2=ma2(x≠±a).又A1(-a,0),A2(a,0)的坐標滿足mx2-y2=ma2
故依題意,曲線C的方程為mx2-y2=ma2
當m<-1時,曲線C的方程為
x2
a2
+
y2
-ma2
=1,C是焦點在y軸上的橢圓;
當m=-1時,曲線C的方程為x2+y2=a2,C是圓心在原點的圓;
當-1<m<0時,曲線C 的方程為
x2
a2
+
y2
-ma2
=1,C是焦點在x軸上的橢圓;
當m>0時,曲線C的方程為
x2
a2
-
y2
ma2
=1,C是焦點在x軸上的雙曲線.
故答案為:m=-1,m>0.
點評:本題考查曲線軌跡方程的求法,曲線與方程的關(guān)系的應用,圓錐曲線的判斷,考查分類討論思想的應用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

平面內(nèi)與兩定點A1(-a,0),A2(a,0)(a>0)連線的斜率之積等于非零常數(shù)m的點的軌跡,加上A1、A2兩點所成的曲線C可以是圓、橢圓成雙曲線.
(Ⅰ)求曲線C的方程,并討論C的形狀與m值的關(guān)系;
(Ⅱ)當m=-1時,對應的曲線為C1;對給定的m∈(-1,0)∪(0,+∞),對應的曲線為C2,設(shè)F1、F2是C2的兩個焦點.試問:在C1上,是否存在點N,使得△F1NF2的面積S=|m|a2.若存在,求tanF1NF2的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

記平面內(nèi)與兩定點A1(-2,0),A2(2,0)連線的斜率之積等于常數(shù)m(其中m<0)的動點B的軌跡,加上A1,A2兩點所構(gòu)成的曲線為C
(I)求曲線C的方程,并討論C的形狀與m的值的關(guān)系;
(Ⅱ)當m=-
3
4
時,過點F(1,0)且斜率為k(k#0)的直線l1交曲線C于M.N兩點,若弦MN的中點為P,過點P作直線l2交x軸于點Q,且滿足
MN
PQ
=0
.試求
|
PQ
|
|
MN
|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面內(nèi)與兩定點A1(-a,0),A2(a,0)(a>0)連線的斜率之積等于非零常數(shù)m的點的軌跡,加上A1、A2兩點所在所面的曲線C可以是圓、橢圓或雙曲線.求曲線C的方程,并討論C的形狀與m的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面內(nèi)與兩定點A1(-2,0),A2(2,0)連線的斜率之積等于非零常數(shù)m的點的軌跡,加上A1,A2兩點,所成的曲線C可以是圓,橢圓或雙曲線.
(I)求曲線C的方程,并討論C的形狀與m值的關(guān)系.
(Ⅱ)當m=-1時,對應的曲線為C1;對給定的m∈(-∞,-1),對應的曲線為C2,若曲線C1的斜率為1的切線與曲線C2相交于A,B兩點,且
OA
OB
=2
(O為坐標原點),求曲線C2的方程.

查看答案和解析>>

同步練習冊答案