解答題

已知函數(shù)f(x)的定義域是R,對任意x、y∈R,都有f(xy)=f(x)+f(y),且x>0時,f(x)<0f(1)=2,求f(x)在[33]上的最大值和最小值.

 

答案:
提示:

提示:先考慮f(x)的奇偶性,得f(x)為奇函數(shù).再考慮f(x)的單調性,設-3≤x1<x2≤3,則xzx1>0,則f(x2x1)<0,又f(x2x1)=f(x2)+f(-x1)=f(x2)-f(x1)<0,所以f(x2)<f(x1),故f(x)在[-3,3]上單調遞減,則f(x)最大f(-3)=-f(3)=-3f(1)6,f(x)最小f(3)=3f(1)=-6.

 


練習冊系列答案
相關習題

科目:高中數(shù)學 來源:成功之路·突破重點線·數(shù)學(學生用書) 題型:044

已知函數(shù)f(x)=m(x+)的圖象與函數(shù)h(x)=(x+)+2的圖象關于點A(0,1)對稱.

(1)求m的值;

(2)若g(x)=f(x)+在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2004全國各省市高考模擬試題匯編(天利38套)·數(shù)學 題型:044

已知函數(shù)f(x)的圖像與函數(shù)h(x)=x++2的圖像關于點A(0,1)對稱.

(1)求f(x)的解析式;

(2)(文)若g(x)=f(x)·x+ax,且g(x)在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍;

(理)若g(x)=f(x)+,且g(x)在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:成功之路·突破重點線·數(shù)學(學生用書) 題型:044

已知函數(shù)f(x)=

(1)求f(x)的定義域;

(2)用定義判斷f(x)的奇偶性;

(3)在[-π,π]上作出f(x)的圖象;

(4)指出f(x)的最小正周期及單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:數(shù)學教研室 題型:044

解答題

已知函數(shù)f(x)的定義域是R,對任意x、y∈R,都有f(xy)=f(x)+f(y),且x>0時,f(x)<0f(1)=2,求f(x)在[3,3]上的最大值和最小值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:中學教材標準學案 數(shù)學 高二上冊 題型:047

解答題

已知函數(shù)f(x)=x3-x+c定義在區(qū)間[0,1]上,x1、x2∈[0,1]且x1≠x2

求證:(1)f(0)=f(1);

(2)|f(x2)-f(x1)|<2|x2-x1|;

(3)|f(x2)-f(x1)|<1.

查看答案和解析>>

同步練習冊答案