與雙曲線的漸近線相切,則的值是 _______.

試題分析:根據(jù)題意可知,由于圓與雙曲線的漸近線相切,而雙曲線的漸近線方程為y=x,y=-x,那么可知圓心(a,0)到直線的距離為,故答案為
點(diǎn)評(píng):解決的關(guān)鍵是利用圓心到直線的距離等于圓的半徑來得到參數(shù)a的值。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓)的離心率為,過右焦點(diǎn)且斜率為1的直線交橢圓兩點(diǎn),為弦的中點(diǎn)。
(1)求直線為坐標(biāo)原點(diǎn))的斜率;
(2)設(shè)橢圓上任意一點(diǎn),且,求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題14分)
已知橢圓)過點(diǎn)(0,2),離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過定點(diǎn)(2,0)的直線與橢圓相交于兩點(diǎn),且為銳角(其中為坐標(biāo)原點(diǎn)),求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的焦點(diǎn)為,其上的動(dòng)點(diǎn)在準(zhǔn)線上的射影為,若是等邊三角形,則的橫坐標(biāo)是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過拋物線 y2 =" 4x" 的焦點(diǎn)作直線交拋物線于A(x1, y1)B(x2, y2)兩點(diǎn),如果=6,那么           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知拋物線和點(diǎn),若拋物線上存在不同兩點(diǎn)滿足
(I)求實(shí)數(shù)的取值范圍;
(II)當(dāng)時(shí),拋物線上是否存在異于的點(diǎn),使得經(jīng)過三點(diǎn)的圓和拋物線在點(diǎn)處有相同的切線,若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)己知、、是橢圓)上的三點(diǎn),其中點(diǎn)的坐標(biāo)為,過橢圓的中心,且,。
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)的直線(斜率存在時(shí))與橢圓交于兩點(diǎn),設(shè)為橢圓 軸負(fù)半軸的交點(diǎn),且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線的左、右焦點(diǎn)分別為F1、F2,過點(diǎn) F1作傾斜角為30°的直線ll與雙曲線的右支交于點(diǎn)P,若線段PF1的中點(diǎn)M落在y軸上,則雙曲線的漸近線方程為                                                      (    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)已知函數(shù)(其中為常數(shù))的圖像經(jīng)過點(diǎn)A、B是函數(shù)圖像上的點(diǎn),正半軸上的點(diǎn).
(1) 求的解析式;
(2) 設(shè)為坐標(biāo)原點(diǎn),是一系列正三角形,記它們的邊長(zhǎng)是,求數(shù)列的通項(xiàng)公式;
(3) 在(2)的條件下,數(shù)列滿足,記的前項(xiàng)和為,證明:。

查看答案和解析>>

同步練習(xí)冊(cè)答案