【題目】已知常數(shù),在矩形ABCD中, , OAB的中點,點EF、G分別在BC、CD、DA上移動,且,PGEOF的交點(如圖),問是否存在兩個定點,使P到這兩點的距離的和為定值?若存在,求出這兩點的坐標及此定值;若不存在,請說明理由

【答案】見解析

【解析】試題分析:根據(jù)題設(shè)條件,首先求出點P坐標滿足的方程,據(jù)此再判斷是否存在的兩定點,使得點P到兩點距離的和為定值.

試題解析:.按題意有

設(shè)由此有

直線的方程為:

直線 的方程為:

從①,②消去參數(shù)k,得點的坐標滿足方程

整理得 時,點P的軌跡為圓弧,所以不存在符合題意的兩點.

時,點P軌跡為橢圓的一部分,點P到該橢圓焦點的距離的和為定長

時,點P到橢圓兩個焦點(的距離之和為定值

時,點P 到橢圓兩個焦點(0, 的距離之和為定值2.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在銳角三角形中,若,則的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=lg(x2+ax﹣a﹣1),給出下述命題:
①f(x)有最小值;
②當a=0時,f(x)的值域為R;
③若f(x)在區(qū)間[2,+∞)上單調(diào)遞增,則實數(shù)a的取值范圍是a≥﹣4;
④a=1時,f(x)的定義域為(﹣1,0);
則其中正確的命題的序號是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知指數(shù)函數(shù)y=g(x)滿足:g(3)=8,定義域為R的函數(shù)f(x)= 是奇函數(shù).
(1)確定y=f(x)和y=g(x)的解析式;
(2)若對任意的x∈[1,4],不等式f(2x﹣3)+f(x﹣k)>0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知事件在矩ABCD的邊CD上隨意取一點P,使得△APB的最大邊是AB發(fā)生的概率為 ,則 =

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),若以直角坐標系中的原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為為實數(shù).

1)求曲線的普通方程和曲線的直角坐標方程;

2)若曲線與曲線有公共點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某實驗室一天的溫度(單位:℃)隨時間t(單位:h)的變化近似滿足函數(shù)關(guān)系: f(t)=10﹣ ,t∈[0,24)
(Ⅰ)求實驗室這一天的最大溫差;
(Ⅱ)若要求實驗室溫度不高于11℃,則在哪段時間實驗室需要降溫?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a∈R,函數(shù)f(x)= +alnx﹣3x,g(x)=﹣x2+8x,且x=1是函數(shù)f(x)的極大值點.
(1)求a的值.
(2)如果函數(shù)y=f(x)和函數(shù)y=g(x)在區(qū)間(b,b+1)上均為增函數(shù),求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校數(shù)學課外興趣小組為研究數(shù)學成績是否與性別有關(guān),先統(tǒng)計本校高二年級每個學生一學期數(shù)學成績平均分(采用百分制),剔除平均分在30分以下的學生后,共有男生300名,女生200名,現(xiàn)采用分層抽樣的方法,從中抽取了100名學生,按性別分為兩組,并將兩組學生成績分為6組,得到如下所示頻數(shù)分布表.

分數(shù)段

3

9

18

15

6

9

6

4

5

10

13

2

附表及公式:

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828


(1)估計男、女生各自的平均分(同一組數(shù)據(jù)用該組區(qū)間中點值作代表),從計算結(jié)果看,數(shù)學成績與性別是否有關(guān);
(2)規(guī)定80分以上者為優(yōu)分(含80分),請你根據(jù)已知條件作出 列聯(lián)表,并判斷是否有90%以上的把握認為“數(shù)學成績與性別有關(guān)”.

查看答案和解析>>

同步練習冊答案