設(shè)函數(shù)f (x)=cos(2x+)+sin2x+2a
(1)求函數(shù)f (x)的單調(diào)遞增區(qū)間
(2)當(dāng)0≤x≤時,f (x)的最小值為0,求a的值.

(1),(2)a=-

解析試題分析:(1)研究三角函數(shù)性質(zhì)首先化為基本三角函數(shù)形式.即. f (x)=cos2x+sin2x+2a=sin(2x+)+2a.再根據(jù)基本三角函數(shù)性質(zhì)列不等關(guān)系:由得f (x)的單調(diào)遞增區(qū)間為(2)由0≤x≤,得,故≤sin(2x+)≤1.由f (x)的最小值為0,得+2a=0.解得a=-
解:(1)f (x)=cos2x+sin2x+2a=sin(2x+)+2a.
,得kp-≤x≤kp+(k∈Z).
所以,f (x)的單調(diào)遞增區(qū)間為
(2)由0≤x≤,得,故≤sin(2x+)≤1.
由f (x)的最小值為0,得+2a=0.解得a=-
考點:三角函數(shù)性質(zhì)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的部分圖象如圖所示.

(1)求的表達(dá)式;
(2)設(shè),求函數(shù)的最小值及相應(yīng)的的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(l)求函數(shù)的最小正周期;
(2)當(dāng)時,求函數(shù)f(x)的單調(diào)區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(1)求函數(shù)的最大值和最小正周期;
(2)若為銳角,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:函數(shù)
(1)求函數(shù)的周期T,與單調(diào)增區(qū)間.
(2)函數(shù)的圖象有幾個公共交點.
(3)設(shè)關(guān)于的函數(shù)的最小值為,試確定滿足的值,并對此時的值求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的最小正周期。
(2)求函數(shù)的最大值及取最大值時x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知任意角的終邊經(jīng)過點,且
(1)求的值.(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
⑴ 求的最小正周期;
⑵設(shè)、,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量a=(cosωx,sinωx),b=(cosωx,cosωx),其中0<ω<2,函數(shù),其圖象的一條對稱軸為。
(1)求函數(shù)的表達(dá)式及單調(diào)遞增區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,S△ABC為其面積,若,b=1,,求a的值。

查看答案和解析>>

同步練習(xí)冊答案