如圖,是的直徑,弦與垂直,并與相交于點(diǎn),點(diǎn)為弦上異于點(diǎn)的任意一點(diǎn),連結(jié)、并延長(zhǎng)交于點(diǎn)、.
⑴ 求證:、、、四點(diǎn)共圓;
⑵ 求證:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,△ABC的角平分線AD的延長(zhǎng)線交它的外接圓于點(diǎn)E.
(1)證明:△ABE∽△ADC;
(2)若△ABC的面積S=AD·AE,求∠BAC的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,為△外接圓的切線,的延長(zhǎng)線交直線于點(diǎn),分別為弦與弦上的點(diǎn),且,四點(diǎn)共圓.
(Ⅰ)證明:是△外接圓的直徑;
(Ⅱ)若,求過四點(diǎn)的圓的面積與△外接圓面積的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,點(diǎn)是以線段為直徑的圓上一點(diǎn),于點(diǎn),過點(diǎn)作圓的切線,與的延長(zhǎng)線交于點(diǎn),點(diǎn)是的中點(diǎn),連結(jié)并延長(zhǎng)與相交于點(diǎn),延長(zhǎng)與的延長(zhǎng)線相交于點(diǎn).
(Ⅰ)求證:;
(Ⅱ)求證:是圓的切線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知⊙O是的外接圓,是邊上的高,是⊙O的直徑.
(1)求證:;
(2)過點(diǎn)作⊙O的切線交的延長(zhǎng)線于點(diǎn),若,求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,過圓O外一點(diǎn)P作該圓的兩條割線PAB和PCD,分別交圓 O于點(diǎn)A,B,C,D弦AD和BC交于Q點(diǎn),割線PEF經(jīng)過Q點(diǎn)交圓 O于點(diǎn)E、F,點(diǎn)M在EF上,且:
(I)求證:PA·PB=PM·PQ; (II)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知PA是⊙O相切,A為切點(diǎn),PBC為割線,弦CD//AP,AD、BC相交于E點(diǎn),F(xiàn)為CE上一點(diǎn),且
(1)求證:A、P、D、F四點(diǎn)共圓;
(2)若AE·ED=24,DE=EB=4,求PA的長(zhǎng)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
A.(幾何證明選講選做題)
|
B.(矩陣與變換選做題) 已知M=,N=,設(shè)曲線y=sinx在矩陣MN對(duì)應(yīng)的變換作用下得到曲線F,求F的方程. |
C.(坐標(biāo)系與參數(shù)方程選做題) 在平面直角坐標(biāo)系xOy中,直線m的參數(shù)方程為(t為參數(shù));在以O為極點(diǎn)、射線Ox為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρsinθ=8cosθ.若直線m與曲線C交于A、B兩點(diǎn),求線段AB的長(zhǎng). |
D.(不等式選做題) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com