【題目】某醫(yī)院對治療支氣管肺炎的兩種方案進(jìn)行比較研究,將志愿者分為兩組,分別采用方案和方案進(jìn)行治療,統(tǒng)計(jì)結(jié)果如下:

有效

無效

合計(jì)

使用方案

96

120

使用方案

72

合計(jì)

32

1)完成上述列聯(lián)表,并比較兩種治療方案有效的頻率;

2)能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為治療是否有效與方案選擇有關(guān)?

附:,其中.

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】1)列聯(lián)表見解析,使用方案治療有效的頻率更高些;(2)不能.

【解析】

(1)由游客購買情況統(tǒng)計(jì)人數(shù)分布表數(shù)據(jù)直接填入列聯(lián)表,

(2)代入公式,計(jì)算出的值,與獨(dú)立性檢驗(yàn)判斷表比較作出判斷.

(1) 根據(jù)題意,填表如下:

有效

無效

合計(jì)

使用方案

96

24

120

使用方案

72

8

80

合計(jì)

168

32

200

使用方案有效的頻率

使用方案有效的頻率,

∴使用方案治療有效的頻率更高些.

2,

∴不能在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為治療是否有效與方案選擇有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與拋物線交于、兩點(diǎn),是坐標(biāo)原點(diǎn),.

1)求線段中點(diǎn)的軌跡的方程;

2)設(shè)直線與曲線交于、兩點(diǎn),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)若a0時(shí),求函數(shù)的單調(diào)遞增區(qū)間;

2)若函數(shù)x1時(shí)取極大值,求實(shí)數(shù)a的取值范圍;

3)設(shè)函數(shù)的零點(diǎn)個(gè)數(shù)為m,試求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B兩地相距100公里,兩地政府為提升城市的抗疫能力,決定在AB之間選址P點(diǎn)建造儲備倉庫,共享民生物資,當(dāng)點(diǎn)P在線段AB的中點(diǎn)C時(shí),建造費(fèi)用為2000萬元,若點(diǎn)P在線段AC上(不含點(diǎn)A),則建造費(fèi)用與PA之間的距離成反比,若點(diǎn)P在線段CB上(不含點(diǎn)B),則建造費(fèi)用與P、B之間的距離成反比,現(xiàn)假設(shè)PA之間的距離為x千米,A地所需該物資每年的運(yùn)輸費(fèi)用為萬元,B地所需該物資每年的運(yùn)輸費(fèi)用為萬元,表示建造倉庫費(fèi)用,表示兩地物資每年的運(yùn)輸總費(fèi)用(單位:萬元).

1)求函數(shù)的解析式;

2)若規(guī)劃倉庫使用的年限為,,求的最小值,并解釋其實(shí)際意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)無窮數(shù)列的前項(xiàng)和為,已知,

(1)求的值;

(2)求數(shù)列的通項(xiàng)公式;

(3)是否存在數(shù)列的一個(gè)無窮子數(shù)列,使對一切均成立?若存在,請寫出數(shù)列的所有通項(xiàng)公式;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為提高生產(chǎn)效率,需引進(jìn)一條新的生產(chǎn)線投入生產(chǎn),現(xiàn)有兩條生產(chǎn)線可供選擇,生產(chǎn)線①:有A,B兩道獨(dú)立運(yùn)行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.02,0.03.若兩道工序都沒有出現(xiàn)故障,則生產(chǎn)成本為15萬元;若A工序出現(xiàn)故障,則生產(chǎn)成本增加2萬元;若B工序出現(xiàn)故障,則生產(chǎn)成本增加3萬元;若AB兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加5萬元.生產(chǎn)線②:有a,b兩道獨(dú)立運(yùn)行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.04,0.01.若兩道工序都沒有出現(xiàn)故障,則生產(chǎn)成本為14萬元;若a工序出現(xiàn)故障,則生產(chǎn)成本增加8萬元;若b工序出現(xiàn)故障,則生產(chǎn)成本增加5萬元;若ab兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加13萬元.

1)若選擇生產(chǎn)線①,求生產(chǎn)成本恰好為18萬元的概率;

2)為最大限度節(jié)約生產(chǎn)成本,你會給工廠建議選擇哪條生產(chǎn)線?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,,且.

1)證明:.

2)若,試在棱上確定一點(diǎn),使與平面所成角的正弦值為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的導(dǎo)函數(shù)零點(diǎn)的個(gè)數(shù);

2)若的最小值為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知曲線為參數(shù)),曲線為參數(shù)),且,點(diǎn)P為曲線的公共點(diǎn).

1)求動點(diǎn)P的軌跡方程;

2)在以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為,求動點(diǎn)P到直線l的距離的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案