【題目】已知橢圓,不過原點(diǎn)的直線與橢圓交于A、B兩點(diǎn).
(1)求面積的最大值.
(2)是否存在橢圓,使得對(duì)于橢圓的每一條切線與橢圓均相交,設(shè)交于A、B兩點(diǎn),且恰取最大值?若存在,求出該橢圓;若不存在,說明理由.
【答案】(1);(2)見解析
【解析】
(1)若直線的斜率存在,設(shè)的方程為,代入橢圓方程得:
.
設(shè), .則:
,,
故 .
在△OAB中,設(shè)邊AB上的高為h.則
,
固定,于是,.
由此,得對(duì)任意的,有,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.
若直線的斜率不存在,設(shè)直線,
則易證,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,
綜上,面積的最大值為.
(2)存在橢圓,該橢圓的任一切線與橢圓交于A、B兩點(diǎn),且.
事實(shí)上,設(shè)滿足條件的橢圓為.過橢圓上任一點(diǎn)的切線方程為,
該切線與橢圓交于A、B兩點(diǎn),
若,則,
由切線方程得,
由(1)知的充分必要條件是,
下面證明:若,當(dāng)時(shí),仍然成立.
此時(shí),過橢圓上任一點(diǎn)的切線方程為,
設(shè),.
,
又,于是,
.
由(1)得.
綜上,存在橢圓,使得對(duì)于橢圓的每一條切線與橢圓交于A、B兩點(diǎn),且恰取最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是底面邊長(zhǎng)為1的正三棱錐,分別為棱長(zhǎng)上的點(diǎn),截面底面,且棱臺(tái)與棱錐的棱長(zhǎng)和相等.(棱長(zhǎng)和是指多面體中所有棱的長(zhǎng)度之和)
(1)證明:為正四面體;
(2)若,求二面角的大;(結(jié)果用反三角函數(shù)值表示)
(3)設(shè)棱臺(tái)的體積為,是否存在體積為且各棱長(zhǎng)均相等的直平行六面體,使得它與棱臺(tái)有相同的棱長(zhǎng)和?若存在,請(qǐng)具體構(gòu)造出這樣的一個(gè)直平行六面體,并給出證明;若不存在,請(qǐng)說明理由.
(注:用平行于底的截面截棱錐,該截面與底面之間的部分稱為棱臺(tái),本題中棱臺(tái)的體積等于棱錐的體積減去棱錐的體積.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(13分)設(shè){an}是公比為正數(shù)的等比數(shù)列a1=2,a3=a2+4.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè){bn}是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,設(shè)實(shí)數(shù)、、、、、滿足
(i)、、且不全為0;
(ii)、、;
(iii)若,則.
若所有形如和的數(shù)均不為2014的倍數(shù),則稱集合為“好集”.求好集所含元素個(gè)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正四面體的各棱長(zhǎng)均為2,、、分別為棱、、的中點(diǎn),以為圓心、1為半徑,分別在面、面內(nèi)作弧,并將兩弧各分成五等份,分點(diǎn)順次為、、、、、以及、、、、、.一只甲蟲欲從點(diǎn)出發(fā),沿四面體表面爬行至點(diǎn),則其爬行的最短距離為___________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的三邊長(zhǎng)分別是,,.下列說法正確的是( )
A.以所在直線為旋轉(zhuǎn)軸,將此三角形旋轉(zhuǎn)一周,所得旋轉(zhuǎn)體的側(cè)面積為
B.以所在直線為旋轉(zhuǎn)軸,將此三角形旋轉(zhuǎn)一周,所得旋轉(zhuǎn)體的體積為
C.以所在直線為旋轉(zhuǎn)軸,將此三角形旋轉(zhuǎn)一周,所得旋轉(zhuǎn)體的側(cè)面積為
D.以所在直線為旋轉(zhuǎn)軸,將此三角形旋轉(zhuǎn)一周,所得旋轉(zhuǎn)體的體積為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公園內(nèi)有一塊以為圓心半徑為米的圓形區(qū)域.為豐富市民的業(yè)余文化生活,現(xiàn)提出如下設(shè)計(jì)方案:如圖,在圓形區(qū)域內(nèi)搭建露天舞臺(tái),舞臺(tái)為扇形區(qū)域,其中兩個(gè)端點(diǎn),分別在圓周上;觀眾席為梯形內(nèi)切在圓外的區(qū)域,其中,,且,在點(diǎn)的同側(cè).為保證視聽效果,要求觀眾席內(nèi)每一個(gè)觀眾到舞臺(tái)處的距離都不超過米.設(shè),.問:對(duì)于任意,上述設(shè)計(jì)方案是否均能符合要求?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于任意實(shí)數(shù),定義設(shè)函數(shù),,則函數(shù)的最大值是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)習(xí)小組由學(xué)生和教師組成,人員構(gòu)成同時(shí)滿足以下三個(gè)條件:①男生人數(shù)多于女生人數(shù);②女生人數(shù)多于教師人數(shù);③教師人數(shù)的兩倍多于男生人數(shù).問:
(1)若教師人數(shù)為4,則女生人數(shù)的最大值為多少?
(2)該小組人數(shù)的最小值為多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com