設(shè)函數(shù)f(x)=ax2+(b-2)x+3(a≠0),若不等式f(x)>0的解集為(-1,3).
(1)求a,b的值;
(2)若函數(shù)f(x)在x∈[m,1]上的最小值為1,求實(shí)數(shù)m的值.

(1)a=-1,b=4   (2)1-

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某房地產(chǎn)開(kāi)發(fā)商投資81萬(wàn)元建一座寫字樓,第一年需維護(hù)費(fèi)用為1萬(wàn)元,以后每年增加2萬(wàn)元,若把寫字樓出租,每年收入租金30萬(wàn)元.
(1)開(kāi)發(fā)商最早在第幾年獲取純利潤(rùn)?
(2)若干年后開(kāi)發(fā)商為了投資其它項(xiàng)目,有兩種處理方案:①純利潤(rùn)最大時(shí),以10萬(wàn)元出售該樓;②年平均利潤(rùn)最大時(shí)以46萬(wàn)元出售該樓.問(wèn)哪種方案更優(yōu)?并說(shuō)明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=ax2-2ax+2+b(a≠0),若f(x)在區(qū)間[2,3]上有最大值5,最小值2.
(1)求a,b的值;
(2)若b<1,g(x)=f(x)-mx在[2,4]上單調(diào),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某食品公司為了解某種新品種食品的市場(chǎng)需求,進(jìn)行了20天的測(cè)試,人為地調(diào)控每天產(chǎn)品的單價(jià)P(元/件):前10天每天單價(jià)呈直線下降趨勢(shì)(第10天免費(fèi)贈(zèng)送品嘗),后10天呈直線上升,其中4天的單價(jià)記錄如表:

時(shí)間(將第x天記為x)x
1
10
11
18
單價(jià)(元/件)P
9
0
1
8
而這20天相應(yīng)的銷售量Q(百件/天)與x對(duì)應(yīng)的點(diǎn)(x,Q)在如圖所示的半圓上.

(1)寫出每天銷售收入y(元)與時(shí)間x(天)的函數(shù)關(guān)系式y(tǒng)=f(x).
(2)在這20天中哪一天銷售收入最高?為使每天銷售收入最高,按此次測(cè)試結(jié)果應(yīng)將單價(jià)P定為多少元為好?(結(jié)果精確到1元)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(2011•湖北)提高過(guò)江大橋的車輛通行能力可改善整個(gè)城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過(guò)20輛/千米時(shí),車流速度為60千米/小時(shí),研究表明:當(dāng)20≤x≤200時(shí),車流速度v是車流密度x的一次函數(shù).
(1)當(dāng)0≤x≤200時(shí),求函數(shù)v(x)的表達(dá)式;
(2)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))f(x)=x•v(x)可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)的二次項(xiàng)系數(shù)為,且不等式的解集為(1,3).
⑴若方程有兩個(gè)相等實(shí)數(shù)根,求的解析式.
⑵若的最大值為正數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,某小區(qū)有一邊長(zhǎng)為2(單位:百米)的正方形地塊OABC,其中OAE是一個(gè)游泳池,計(jì)劃在地塊OABC內(nèi)修一條與池邊AE相切的直路(寬度不計(jì)),切點(diǎn)為M,并把該地塊分為兩部分.現(xiàn)以點(diǎn)O為坐標(biāo)原點(diǎn),以線段OC所在直線為x軸,建立平面直角坐標(biāo)系,若池邊AE滿足函數(shù))的圖象,且點(diǎn)M到邊OA距離為
(1)當(dāng)時(shí),求直路所在的直線方程;
(2)當(dāng)t為何值時(shí),地塊OABC在直路不含泳池那側(cè)的面積取到最大,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

提高過(guò)江大橋的車輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,大橋上的車流速度(單位:千米/小時(shí))是車流密度(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過(guò)20輛/千米時(shí),車流速度為60千米/小時(shí).研究表明:當(dāng)時(shí),車流速度是車流密度的一次函數(shù).
(1)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(2)當(dāng)車流密度為多大時(shí),車流量(單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

我國(guó)遼東半島普蘭附近的泥炭層中,發(fā)掘出的古蓮子,至今大部分還能發(fā)芽開(kāi)花,這些古蓮子是多少年以前的遺物呢?要測(cè)定古物的年代,可用放射性碳法.在動(dòng)植物的體內(nèi)都含有微量的放射性14C,動(dòng)植物死亡后,停止了新陳代謝,14C不再產(chǎn)生,且原有的14C會(huì)自動(dòng)衰變,經(jīng)過(guò)5570年(叫做14C的半衰期),它的殘余量只有原始量的一半,經(jīng)過(guò)科學(xué)家測(cè)定知道,若14C的原始含量為a,則經(jīng)過(guò)t年后的殘余量a′(與a之間滿足a′=a·e-kt).現(xiàn)測(cè)得出土的古蓮子中14C殘余量占原量的87.9%,試推算古蓮子的生活年代.

查看答案和解析>>

同步練習(xí)冊(cè)答案