【題目】在△ABC中,A=30°,BC=2 ,D是AB邊上的一點,CD=2,△BCD的面積為4,求AC的長.

【答案】【解答】解:由題意可得 CBCDsin∠BCD=4,即 ×2 ×2 sin∠BCD=4,解得 sin∠BCD=
①當(dāng)∠BCD 為銳角時,cos∠BCD=
△BCD中,由余弦定理可得 BD= =4.
△BCD中,由正弦定理可得 ,即 ,故 sinB=
在△ABC中,由正弦定理可得 ,即 ,解得 AC=4.
②當(dāng)∠BCD 為鈍角時,cos∠BCD=﹣
△BCD中,由余弦定理可得 BD= =4
△BCD中,由正弦定理可得 ,即 ,故 sinB=
在△ABC中,由正弦定理可得 ,即 ,解得 AC=2
綜上可得 AC=4或2 ,
【解析】由△BCD的面積為4,求得sin∠BCD 的值,進(jìn)而求得cos∠BCD 的值,△BCD中,由余弦定理可得BD 的值,△BCD中,由正弦定理求得sinB 的值.再在△ABC中,由正弦定理求得AC的長.
【考點精析】解答此題的關(guān)鍵在于理解正弦定理的定義的相關(guān)知識,掌握正弦定理:,以及對余弦定理的定義的理解,了解余弦定理:;;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解關(guān)于x的不等式12x2﹣ax>a2(a∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2cosx(sinx﹣cosx)+1,x∈R.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象向左平移 個單位后,再將圖象上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)的最大值及取得最大值時的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的極坐標(biāo)方程是ρ=2,以極點為原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為(t為參數(shù)).

(1)寫出直線l的普通方程與曲線C的直角坐標(biāo)方程;

(2)設(shè)曲線C經(jīng)過伸縮變換得到曲線,設(shè)M(x,y)為上任意一點,求的最小值,并求相應(yīng)的點M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面,底面是直角梯形,,

,點上,且.

(1)已知點,且,求證:平面平面

(2)若的面積是梯形面積為,求點E到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時,若函數(shù)的導(dǎo)函數(shù)的圖象與軸交于, 兩點,其橫坐標(biāo)分別為, ,線段的中點的橫坐標(biāo)為,且, 恰為函數(shù)的零點,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|1≤x≤5},B={x|log2x>1}
(1)分別求A∩B,(RB)∪A;
(2)已知集合C={x|2a﹣1≤x≤a+1},若CA,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】銷售甲、乙兩種商品所得利潤分別是y1 , y2萬元,它們與投入資金x萬元的關(guān)系分別為y1=m +a,y2=bx,(其中m,a,b都為常數(shù)),函數(shù)y1 , y2對應(yīng)的曲線C1 , C2如圖所示.

(1)求函數(shù)y1與y2的解析式;
(2)若該商場一共投資10萬元經(jīng)銷甲、乙兩種商品,求該商場所獲利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果執(zhí)行如圖的程序框圖,若輸入n=6,m=4,那么輸出的p等于(
A.720
B.360
C.240
D.120

查看答案和解析>>

同步練習(xí)冊答案