設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{Sn}的前n項(xiàng)和為T(mén)n,滿足Tn=2Sn-n2,n∈N*.
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式.
(1) a1=1 (2) an=3·2n-1-2
解析解:(1)由題意a1=S1=T1,Tn=2Sn-n2,
令n=1得a1=2a1-1,∴a1=1.
(2)由Tn=2Sn-n2①
得Tn-1=2Sn-1-(n-1)2(n≥2)②
①-②得Sn=2an-2n+1(n≥2),
驗(yàn)證n=1時(shí)也成立.
∴Sn=2an-2n+1③
則Sn-1=2an-1-2(n-1)+1(n≥2)④
③-④得an=2an-2an-1-2,
即an+2=2(an-1+2),
故數(shù)列{an+2}是公比為2的等比數(shù)列,首項(xiàng)為3,
所以an+2=3·2n-1,從而an=3·2n-1-2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}為等差數(shù)列,a3=5,a7=13,數(shù)列{bn}的前n項(xiàng)和為Sn,且有Sn=2bn-1,
(1)求{an},{bn}的通項(xiàng)公式.
(2)若cn=anbn,{cn}的前n項(xiàng)和為T(mén)n,求Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列{an}的首項(xiàng)不為零,前n項(xiàng)和為Sn,且對(duì)任意的r,tN*,都有.
(1)求數(shù)列{an}的通項(xiàng)公式(用a1表示);
(2)設(shè)a1=1,b1=3,,求證:數(shù)列為等比數(shù)列;
(3)在(2)的條件下,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知正項(xiàng)數(shù)列,其前項(xiàng)和滿足且是和的等比中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2) 符號(hào)表示不超過(guò)實(shí)數(shù)的最大整數(shù),記,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}的前n項(xiàng)和為Sn,3Sn=an-1(n∈N?).
(1)求a1,a2;
(2)求證:數(shù)列{an}是等比數(shù)列;
(3)求an和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知正項(xiàng)數(shù)列{an},其前n項(xiàng)和Sn滿足6Sn=+3an+2,且a1,a2,a6是等比數(shù)列{bn}的前三項(xiàng).
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)記Tn=a1bn+a2bn-1+…+anb1,n∈N*,證明:3Tn+1=2bn+1-an+1(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列{an}前n項(xiàng)和為Sn,點(diǎn)均在直線上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè),Tn是數(shù)列{bn}的前n項(xiàng)和,試求Tn;
(3)設(shè)cn=anbn,Rn是數(shù)列{cn}的前n項(xiàng)和,試求Rn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知各項(xiàng)均為正數(shù)的數(shù)列滿足,且,其中.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列滿足是否存在正整數(shù)m、n(1<m<n),使得成等比數(shù)列?若存在,求出所有的m、n的值,若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
等比數(shù)列{an}的前n項(xiàng)和為Sn,已知a1+an=66,a2an-1=128,Sn=126,求n和公比q的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com