已知函數(shù).
(1)求函數(shù)的定義域;(2)判斷函數(shù)的奇偶性;(3)求證:﹥0.
(1);(2)偶函數(shù),證明見(jiàn)解析;(3)證明見(jiàn)解析.
解析試題分析:(1)由分母不能為零得求解即可;(2)在(1)的基礎(chǔ)上,只要再判斷與的關(guān)系即可;(3)在(2)的基礎(chǔ)上要證明對(duì)稱區(qū)間上成立可即可.不妨證明:當(dāng)時(shí),則有進(jìn)而有,,然后得到,再由奇偶性得到對(duì)稱區(qū)間上的結(jié)論.
試題解析:(1).
(2)設(shè),
,
為偶函數(shù).
(3)當(dāng)時(shí),<<1,-1<<0,<.
又,則>0,
由為偶函數(shù)知,當(dāng)x>0時(shí),>0,
綜上可知當(dāng)>0.
考點(diǎn):1、函數(shù)的定義域及其求法;2、函數(shù)的值域;3、函數(shù)奇偶性的判斷.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(2011•山東)某企業(yè)擬建造如圖所示的容器(不計(jì)厚度,長(zhǎng)度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設(shè)計(jì)要求容器的體積為立方米,且l≥2r.假設(shè)該容器的建造費(fèi)用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費(fèi)用為3千元,半球形部分每平方米建造費(fèi)用為c(c>3)千元.設(shè)該容器的建造費(fèi)用為y千元.
(1)寫出y關(guān)于r的函數(shù)表達(dá)式,并求該函數(shù)的定義域;
(2)求該容器的建造費(fèi)用最小時(shí)的r.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某種樹(shù)苗栽種時(shí)高度為A(A為常數(shù))米,栽種n年后的高度記為f(n).經(jīng)研究發(fā)現(xiàn)f(n)近似地滿足f(n)=,其中,a,b為常數(shù),n∈N,f(0)=A.已知栽種3年后該樹(shù)木的高度為栽種時(shí)高度的3倍.
(1)栽種多少年后,該樹(shù)木的高度是栽種時(shí)高度的8倍;
(2)該樹(shù)木在栽種后哪一年的增長(zhǎng)高度最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某公司承建扇環(huán)面形狀的花壇如圖所示,該扇環(huán)面花壇是由以點(diǎn)為圓心的兩個(gè)同心圓弧、弧以及兩條線段和圍成的封閉圖形.花壇設(shè)計(jì)周長(zhǎng)為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米(),圓心角為弧度.
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)在對(duì)花壇的邊緣進(jìn)行裝飾時(shí),已知兩條線段的裝飾費(fèi)用為4元/米,兩條弧線部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為,當(dāng)為何值時(shí),取得最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)的定義域?yàn)镋,值域?yàn)镕.
(1)若E={1,2},判斷實(shí)數(shù)λ=lg22+lg2lg5+lg5﹣與集合F的關(guān)系;
(2)若E={1,2,a},F(xiàn)={0,},求實(shí)數(shù)a的值.
(3)若,F(xiàn)=[2﹣3m,2﹣3n],求m,n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若函數(shù)f(x)=sin2ax-sinaxcosax(a>0)的圖象與直線y=m相切,相鄰切點(diǎn)之間的距離為.
(1)求m和a的值;
(2)若點(diǎn)A(x0,y0)是y=f(x)圖象的對(duì)稱中心,且x0∈,求點(diǎn)A的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的圖象分別與軸相交于兩點(diǎn),且向量(分別是與軸正半軸同方向的單位向量),又函數(shù).
(1)求的值;
(2)若不等式的解集為,求的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)f(x)是定義在R上的奇函數(shù),且對(duì)任意實(shí)數(shù)x,恒有f(x+2)=-f(x),當(dāng)x∈[0,2]時(shí),f(x)=2x-x2.
(1)求證:f(x)是周期函數(shù);
(2)當(dāng)x∈[2,4]時(shí),求f(x)的解析式;
(3)計(jì)算f(0)+f(1)+f(2)+…+f(2014)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com