已知橢圓C1
x2
a2
+
y2
b2
=1   (a>b>0)
過點A(0,
2
)
且它的離心率為
3
3

(1)求橢圓C1的方程;
(2)設橢圓C1的左焦點為F1,右焦點為F2,直線l1過點F1且垂直于橢圓的長軸,動直線l2垂直l1于點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;
(3)已知動直線l過點Q(4,0),交軌跡C2于R、S兩點.是否存在垂直于x軸的直線m被以RQ為直徑的圓O1所截得的弦長恒為定值?如果存在,求出m的方程;如果不存在,說明理由.
(1)因為橢圓C1
x2
a2
+
y2
b2
=1
(a>b>0)過點A(0,
2
)
,所以b=
2
,b2=2,
又因為橢圓C1的離心率e=
3
3
,所以e2=
c2
a2
=
a2-b2
a2
=
1
3
,解得a2=3.
所以橢圓C1的方程是
x2
3
+
y2
2
=1
;
(2)因為線段PF2的垂直平分線交l2于點M,
所以|MP|=|MF2|,即動點M到定直線l1:x=-1的距離等于它到定點F2(1,0)的距離,
所以動點M的軌跡C2是以l1為準線,F(xiàn)2為焦點的拋物線,
所以點M的軌跡C2的方程為y2=4x;
(3)設R(x1,y1),假設存在直線m:x=t滿足題意,則圓心O1(
x1+4
2
,
y1
2
)

過O1作直線x=t的垂線,垂足為E,設直線m與圓O1的一個交點為G.
可得:|EG|2=|O1G|2-|O1E|2=|O1Q|2-|O1E|2,
|EG|2=|O1Q|2-|O1E|2=
(x1-4)2+
y21
4
-(
x1+4
2
-t)2

=
1
4
y21
+
(x1-4)2-(x1+4)2
4
+t(x1+4)-t2

=x1-4x1+t(x1+4)-t2=(t-3)x1+4t-t2
當t=3時,|EG|2=3,此時直線m被以RQ為直徑的圓O1所截得的弦長恒為定值2
3

因此存在直線m:x=3滿足題意.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1、F2,其中F2也是拋物線C2:y2=4x的焦點,M是C1與C2在第一象限的交點,且|MF2|=
5
3

(1)求橢圓C1的方程;
(2)已知菱形ABCD的頂點A,C在橢圓C1上,對角線BD所在的直線的斜率為1.
①當直線BD過點(0,
1
7
)時,求直線AC的方程;
②當∠ABC=60°時,求菱形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的一條準線方程是x=
25
4
,其左、右頂點分別是A、B;雙曲線C2
x2
a2
-
y2
b2
=1
的一條漸近線方程為3x-5y=0.
(1)求橢圓C1的方程及雙曲線C2的離心率;
(2)在第一象限內(nèi)取雙曲線C2上一點P,連接AP交橢圓C1于點M,連接PB并延長交橢圓C1于點N,若
AM
=
MP
.求
MN
AB
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,直線l:y=x+2
2
與以原點為圓心、以橢圓C1的短半軸長為半徑的圓相切.
(Ⅰ)求橢圓C1的方程.
(Ⅱ)設橢圓C1的左焦點為F1,右焦點為F2,直線l1過點F1,且垂直于橢圓的長軸,動直線l2垂直l1于點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;
(Ⅲ)若AC、BD為橢圓C1的兩條相互垂直的弦,垂足為右焦點F2,求四邊形ABCD的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)與雙曲線C2:x2-
y2
4
=1有公共的焦點,C2的一條漸近線與以C1的長軸為直徑的圓相交于A,B兩點,若C1恰好將線段AB三等分,則b2=
0.5
0.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•汕頭一模)已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別為F1、F2,右頂點為A,離心率e=
1
2

(1)設拋物線C2:y2=4x的準線與x軸交于F1,求橢圓的方程;
(2)設已知雙曲線C3以橢圓C1的焦點為頂點,頂點為焦點,b是雙曲線C3在第一象限上任意-點,問是否存在常數(shù)λ(λ>0),使∠BAF1=λ∠BF1A恒成立?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案