【題目】某林場現(xiàn)有木材存量為,每年以25%的增長率逐年遞增,但每年年底要砍伐的木材量為,經(jīng)過年后林場木材存有量為
(1)求的解析式
(2)為保護(hù)生態(tài)環(huán)境,防止水土流失,該地區(qū)每年的森林木材存量不應(yīng)少于,如果,那么該地區(qū)會(huì)發(fā)生水土流失嗎?若會(huì),要經(jīng)過幾年?(取)
【答案】(1)(2)會(huì);8年后
【解析】
(1)根據(jù)前三年木材存量,歸納出解析式,再用數(shù)學(xué)歸納法進(jìn)行證明即可;
(2)根據(jù)(1)中所求函數(shù)關(guān)系式,結(jié)合參考數(shù)據(jù),解不等式即可.
(1)1年后,木材存量,
2年后,木材存量
3年后,木材存量
根據(jù)以上數(shù)據(jù)歸納推理得:
用數(shù)學(xué)歸納法證明如下:
①當(dāng)時(shí),,顯然成立;
②假設(shè)當(dāng)時(shí),成立,
則當(dāng)時(shí),
即證,當(dāng)時(shí),
(2)當(dāng)時(shí),若該地區(qū)今后發(fā)生水土流失,則木材存量必須小于
則,解得
兩邊取對(duì)數(shù)得
即
故:經(jīng)過8年后,該地區(qū)就會(huì)發(fā)生水土流失.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高血壓高血糖和高血脂統(tǒng)稱“三高”.如圖是西南某地區(qū)從2010年至2016年患“三高”人數(shù)y(單位:千人)的折線圖.
(1)由折線圖看出,可用線性回歸模型擬合與的關(guān)系,請(qǐng)求出相關(guān)系數(shù)(精確到0.01)并加以說明;
(2)建立關(guān)于的回歸方程,預(yù)測(cè)2018年該地區(qū)患“三高”的人數(shù).
參考數(shù)據(jù):,,,.參考公式:相關(guān)系數(shù) 回歸方程 中斜率和截距的最小二乘法估計(jì)公式分別為:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)的圖象向左平移個(gè)單位后得到的圖象對(duì)應(yīng)的函數(shù)是奇函數(shù),則直線的斜率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,平面,點(diǎn)是的中點(diǎn),,,.
(1)求證:平面平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)一種產(chǎn)品,每年投入固定成本0.5萬元,此外每生產(chǎn)100件這種產(chǎn)品還需要增加投資0.25萬元,經(jīng)預(yù)測(cè)可知,市場對(duì)這種產(chǎn)品的年需求量為500件,當(dāng)出售的這種產(chǎn)品的數(shù)量為t(單位:百件)時(shí),銷售所得的收入約為(萬元).
(1)若該公司的年產(chǎn)量為x(單位:百件),試把該公司生產(chǎn)并銷售這種產(chǎn)品所得的年利潤表示為年產(chǎn)量x的函數(shù);
(2)當(dāng)這種產(chǎn)品的年產(chǎn)量為多少時(shí),當(dāng)年所得利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學(xué)文化的優(yōu)秀遺產(chǎn),數(shù)學(xué)家劉徽在注解《九章算術(shù)》時(shí),發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊行的邊數(shù)無限增加時(shí),多邊形的面積可無限逼近圓的面積,為此他創(chuàng)立了割圓術(shù),利用割圓術(shù),劉徽得到了圓周率精確到小數(shù)點(diǎn)后四位3.1416,后人稱3.14為徽率,如圖是利用劉徽的割圓術(shù)設(shè)計(jì)的程序框圖,若結(jié)束程序時(shí),則輸出的為( )(,,)
A. 6 B. 12 C. 24 D. 48
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:與拋物線C:相切.
(1)求拋物線方程;
(2)斜率不為0的直線經(jīng)過拋物線C的焦點(diǎn)F,交拋物線于兩點(diǎn)A,B,拋物線C上是否存在兩點(diǎn)D,E關(guān)于直線對(duì)稱.若存在求出斜率k的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù),).
(1)求函數(shù)在點(diǎn)處的切線方程;
(2)若對(duì)于任意,存在,使得,求的取值范圍;
(3)若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)f(x),函數(shù)g(θ)=cos2θ+2sinθ,θ∈[m,].m,b∈R.
(1)求b的值;
(2)判斷函數(shù)f(x)在[0,1]上的單調(diào)性,并證明;
(3)當(dāng)x∈[0,1]時(shí),函數(shù)g(θ)的最小值恰為f(x)的最大值,求m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com