分析 (1)利用兩個向量的數(shù)量積公式,三角恒等變換,化簡可得f(x)的解析式.
(2)利用正弦函數(shù)的單調(diào)性,求得f(x)的單調(diào)增區(qū)間,再結(jié)合x∈[-$\frac{3}{8}$π,$\frac{3}{8}$π],得出結(jié)論.
解答 解:(1)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$=2sinxcosx 1-2cos2x=sin2x-cos2x=$\sqrt{2}$sin(2x-$\frac{π}{4}$).
(2)由f(x)=$\sqrt{2}$sin(2x-$\frac{π}{4}$),可得它的最小正周期為T=$\frac{2π}{|ω|}$=π,
令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{8}$≤x≤kπ+$\frac{3π}{8}$,可得函數(shù)的增區(qū)間為[kπ-$\frac{π}{8}$,kπ+$\frac{3π}{8}$],k∈Z,
再結(jié)合x∈[-$\frac{3}{8}$π,$\frac{3}{8}$π],可得函數(shù)的增區(qū)間為[-$\frac{π}{8}$,$\frac{3π}{8}$].
點評 本題主要考查兩個向量的數(shù)量積公式,三角恒等變換,正弦函數(shù)的單調(diào)性,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 銳角三角形 | B. | 直角三角形 | C. | 鈍角三角形 | D. | 任意三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 由實數(shù)運算“(ab)t=a(bt)”類比到“($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)” | |
B. | 由實數(shù)運算“(ab)t=at+bt”類比到“($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow$•$\overrightarrow{c}$” | |
C. | 由實數(shù)運算“|ab|=|a||b|”類比到“|$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|” | |
D. | 由實數(shù)運算“$\frac{ac}{bc}$=$\frac{a}$”類比到“$\frac{\overrightarrow{a}•\overrightarrow{c}}{\overrightarrow•\overrightarrow{c}}$=$\frac{\overrightarrow{a}}{\overrightarrow}$” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com