(本題滿分18分)本題共有3個(gè)小題,第1小題滿分3分,第2小題滿分8分,第3小題滿分7分.
已知拋物線為常數(shù)),為其焦點(diǎn).
(1)寫出焦點(diǎn)的坐標(biāo);
(2)過點(diǎn)的直線與拋物線相交于兩點(diǎn),且,求直線的斜率;
(3)若線段是過拋物線焦點(diǎn)的兩條動(dòng)弦,且滿足,如圖所示.求四邊形面積的最小值
(1)(a,0);(2);(3)
(1)
    .                            ………………………3分
(2) 設(shè)滿足題意的點(diǎn)為           …………………4分

.   ……………………7分
,
.……9分
  .                  …………………11分
(3)于是,設(shè)直線AC的斜率為. ………12分
聯(lián)立方程組,化簡得(設(shè)點(diǎn)),則是此方程的兩個(gè)根.
.                          ………………………13分

     =
     =
     =.                  …………………………………15分
.……16分
    。
.                   ………………………………18分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,以原點(diǎn)O為頂點(diǎn),以y軸為對(duì)稱軸的拋物線E的焦點(diǎn)為F(0,1),點(diǎn)M是直線上任意一點(diǎn),過點(diǎn)M引拋物線E的兩條切線分別交x軸于點(diǎn)S , T,切點(diǎn)分別為B、A。
(1)求拋物線E的方程;
(2)求證:點(diǎn)S,T在以FM為直徑的圓上;
(3)當(dāng)點(diǎn)M在直線上移動(dòng)時(shí),直線AB恒過焦點(diǎn)F,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知拋物線
(1)設(shè)是C1的任意兩條互相垂直的切線,并設(shè),證明:點(diǎn)M的縱坐標(biāo)為定值;
(2)在C1上是否存在點(diǎn)P,使得C1在點(diǎn)P處切線與C2相交于兩點(diǎn)A、B,且AB的中垂線恰為C1的切線?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)
拋物線D以雙曲線的焦點(diǎn)為焦點(diǎn).
(1)求拋物線D的標(biāo)準(zhǔn)方程;
(2)過直線上的動(dòng)點(diǎn)P作拋物線D的兩條切線,切點(diǎn)為A,B.求證:直線AB過定點(diǎn)Q,并求出Q的坐標(biāo);
(3)在(2)的條件下,若直線PQ交拋物線DM,N兩點(diǎn),求證:|PM|·|QN|=|QM|·|PN|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

把曲線按向量平移后得到曲線,曲線有一條準(zhǔn)線方程為,則的值為____________,離心率為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的焦點(diǎn)到雙曲線的漸近線的距離為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓C:的左焦點(diǎn)為F,上頂點(diǎn)為A,過點(diǎn)A作垂直于AF的直線交橢圓C于另外一點(diǎn)P,交x軸正半軸于點(diǎn)Q,且
(1)求橢圓C的離心率;
(2)若過A、Q、F三點(diǎn)的圓恰好與直線l相切,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

曲線的長度是          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系中,定義點(diǎn)之間的“直角距離”為。若到點(diǎn)的“直角距離”相等,其中實(shí)數(shù)滿足,則所有滿足條件的點(diǎn)的軌跡的長度之和為

查看答案和解析>>

同步練習(xí)冊答案