(本小題滿分14分)已知數(shù)列是各項均不為的等差數(shù)列,公差為,為其前項和,且滿足,.?dāng)?shù)列滿足,為數(shù)列的前項和.

(1)求、;

(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有

的值;若不存在,請說明理由.

 

【答案】

(1),,

(2)的取值范圍是

(3)當(dāng)且僅當(dāng)時,數(shù)列中的成等比數(shù)列.

【解析】本試題主要是考查了數(shù)列通項公式與前n項和之間的關(guān)系的運(yùn)用以及分類討論思想求解最值。

(1)利用 an2=S2n-1,n取1或2,可求數(shù)列的首項與公差,從人體可得數(shù)列的通項,進(jìn)而可求數(shù)列的和;

(2)分類討論,分離參數(shù),求出對應(yīng)函數(shù)的最值,即可求得結(jié)論.

(3)根據(jù)已知值成等比數(shù)列,可知參數(shù)m的范圍,然后利用m是整數(shù),得到值。

解:(1)(法一)在中,令,

   即       ………………………2分

解得,,                        …………………3分

,

.        ……………………5分

(法二)是等差數(shù)列,

.                …………………………2分

,得 ,                        

,,則.               …………………3分

(求法同法一)

(2)①當(dāng)為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.       …………………………………6分

 ,等號在時取得.           

此時 需滿足.                …………………………7分

②當(dāng)為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.        ……………………………8分

 是隨的增大而增大, 取得最小值

此時 需滿足.                …………………………9分

綜合①、②可得的取值范圍是.   …………………………10分

(3)

 若成等比數(shù)列,則,即.11分

(法一)由,  可得,

,     ……………………12分

.     ……………………13分

,且,所以,此時

因此,當(dāng)且僅當(dāng), 時,數(shù)列中的成等比數(shù)列.…………14分

(法二)因為,故,即,

,(以下同上).…………………13分

 

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個焦點,當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進(jìn)行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊答案