【題目】一個口袋內(nèi)裝有大小相同的7個白球和1個黑球.

1)從口袋內(nèi)取出3個球,共有多少種取法?

2)從口袋內(nèi)取出3個球,使其中含有1個黑球,有多少種取法?

3)從口袋內(nèi)取出3個球,使其中不含黑球,有多少種取法?

【答案】156;(221;(335

【解析】

1)沒有任何要求,直接從8個球中取3個即可;

2)從口袋內(nèi)取出3個球,使其中含有1個黑球,則只需從7個白球中取2個即可;

3)從口袋內(nèi)取出3個球,使其中不含黑球,則只需從7個白球中取3.

1)從口袋內(nèi)取出3個球,共有.

2)從口袋內(nèi)取出3個球,使其中含有1個黑球,則需從7個白球中取2個,

所以共有.

3)從口袋內(nèi)取出3個球,使其中不含黑球,也就是要從7個白球中取出3個球,

所以共有.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表作之一,其中《方田》章給出計算弧田面積所用的經(jīng)驗公式為:弧田面積(弦),弧田(如圖)由圓弧和其所對弦所圍成,公式中指圓弧所對弦長,等于半徑長與圓心到弦的距離之差,現(xiàn)有圓心角為,半徑等于6米的弧田,按照上述經(jīng)驗公式計算所得弧田面積約為(

A.12平方米B.16平方米C.20平方米D.24平方米

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè),分別是正方體的棱上兩點,且,,其中正確的命題為(

A.三棱錐的體積為定值

B.異面直線所成的角為

C.平面

D.直線與平面所成的角為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè)的極小值為,當(dāng)時,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)

討論的單調(diào)區(qū)間;

當(dāng)時,上的最小值為,求上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,討論函數(shù)的單調(diào)性;

(2)當(dāng)時,若不等式時恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在2018年俄羅斯世界杯期間,莫斯科的部分餐廳經(jīng)營了來自中國的小龍蝦,這些小龍蝦標有等級代碼.為得到小龍蝦等級代碼數(shù)值與銷售單價之間的關(guān)系,經(jīng)統(tǒng)計得到如下數(shù)據(jù):

等級代碼數(shù)值

38

48

58

68

78

88

銷售單價(/kg)

16.8

18.8

20.8

22.8

24

25.8

(1)已知銷售單價與等級代碼數(shù)值之間存在線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程(系數(shù)精確到0.1);

(2)若莫斯科某個餐廳打算從上表的6種等級的中國小龍蝦中隨機選2種進行促銷,記被選中的2種等級代碼數(shù)值在60以下(不含60)的數(shù)量為,求的分布列及數(shù)學(xué)期望.

參考公式:對一組數(shù)據(jù),,,其回歸直線的斜率和截距最小二乘估計分別為:,.

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在單位正內(nèi)任取一點P,PAPB、PC為邊生成

(1)當(dāng)分別為銳角三角形、直角三角形、鈍角三角形時,求出點P的軌跡

(2)證明當(dāng)的周長取最小值時,面積取最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)判斷函數(shù)的奇偶性并證明;

2)用定義證明函數(shù)在區(qū)間上是單調(diào)遞增函數(shù):

3)求函數(shù)在區(qū)間上的值域.

查看答案和解析>>

同步練習(xí)冊答案