18.已知集合A={x|m<x<2m},B={x|y=$\sqrt{4-x}$},C={y|y=2x-$\sqrt{x-1}$}.
(1)若log3m=1,求A∪B;
(2)若A∩(B∩C)≠∅,求m的取值范圍.

分析 (1)先求出A={x|3<x<6},B={x|x≤4},由此能求出A∪B.
(2)先求出$C=[\frac{15}{8},+∞)$,從而$B∩C=[\frac{15}{8},4]$,再由A∩(B∩C)≠∅,能求出m的取值范圍.

解答 解:(1)若log3m=1,∴m=3.…(1分)
∴A={x|3<x<6},又B={x|x≤4},
∴A∪B={x|x<6}.…(4分)
(2)令$\sqrt{x-1}=t(t≥0)$,∴x=t2+1.…(5分)
∴$y=2x-\sqrt{x-1}=2({t^2}+1)-t=2{(t-\frac{1}{4})^2}+\frac{15}{8}$,…(7分)
當(dāng)$t=\frac{1}{4}$,即$x=\frac{17}{16}$時,$y=2x-\sqrt{x-1}$取得最小值,且最小值為$\frac{15}{8}$.…(8分)
故$C=[\frac{15}{8},+∞)$,從而$B∩C=[\frac{15}{8},4]$,…(9分)
∵A∩(B∩C)≠∅,
∴$\left\{\begin{array}{l}m<4\\ 2m>\frac{15}{8}\\ m<2m\end{array}\right.⇒m∈(\frac{15}{16},4)$.
∴m的取值范圍是($\frac{15}{16}$,4].…(12分)

點評 本題考查并集的求法,考查實數(shù)的取值范圍的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意并集、交集的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在半徑為2,圓心角為變量的扇形OAB內(nèi)作一內(nèi)切圓P,再在扇形內(nèi)作一個與扇形兩半徑相切并與圓P外切的小圓Q,設(shè)圓P與圓Q的半徑之積為y.
(1)按下列要求寫出函數(shù)關(guān)系式:
①設(shè)∠AOB=2θ(0<θ<$\frac{π}{2}}$),將y表示成θ的函數(shù);
②設(shè)圓P的半徑x(0<x<1),將y表示成x的函數(shù).
(2)請你選用(1)中的一個函數(shù)關(guān)系式,求y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知P為橢圓$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1上任意一點,F(xiàn)1、F2是橢圓的兩個焦點,則下列關(guān)于“|PF1|•|PF2|的最大值和最小值”的說法中,正確的結(jié)論是( 。
A.有最大值$\sqrt{5}$+1和最小值4B.有最大值5和最小值4
C.有最大值5和最小值$\sqrt{5}$-1D.無最大值,最小值4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若集合M={-1,0,1},則集合M的所有非空真子集的個數(shù)是( 。
A.7B.6C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=x3-3x2-k有三個不同的零點,則實數(shù)k的取值范圍是(  )
A.(-4,0)B.[-4,0)C.(-∞,-4)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知ABC-A1B1C1是各條棱長均等于2的正三棱柱,D是側(cè)棱CC1的中點,點C1到平面AB1D的距離(  )
A.$\frac{\sqrt{2}}{4}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.$\frac{3\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.一組數(shù)據(jù)按從小到大順序排列為1,2,4,x,6,9這組數(shù)據(jù)的中位數(shù)為5,那么這組數(shù)據(jù)的眾數(shù)為( 。
A.4B.5C.5.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知f(x)是定義在[-5,5]上的偶函數(shù),且f(3)>f(1),則正確的是( 。
A.f(0)<f(5)B.f(-1)<f(3)C.f(3)>f(2)D.f(2)>f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)集合A={x|y=ln(x-1)},集合B={y|y=2x},則A∪B(  )
A.(0,+∞)B.(1,+∞)C.(0,1)D.(1,2)

查看答案和解析>>

同步練習(xí)冊答案